Forum Replies Created
-
AuthorPosts
-
Gyula SzászModerator
“For a given set of macroscopic variables, the entropy measures the degree to which the probability of the system is spread out over different possible microstates. In contrast to the macrostate, which characterizes plainly observable average quantities, a microstate specifies all molecular details about the system including the position and velocity of every molecule. The more such states available to the system with appreciable probability, the greater the entropy. In statistical mechanics, entropy is a measure of the number of ways in which a system may be arranged, often taken to be a measure of “disorder” (the higher the entropy, the higher the disorder).”
Gyula
Gyula SzászModeratorDear Bill,
I am not a researcher in thermodynamics. I know that entropy is an extensive status variable which is not defined sufficiently clear (to me). The entropy (usual symbol S) is a “measure of the number of microscopic configurations” that corresponds to a thermodynamic system in a state specified by certain macroscopic variables and entropy is generally used for closed systems. However, the thermodynamics don’t know anything about “microscopic configurations”.
It is true, there are inter molecular order to be connect to intra molecular disorder, but how? Nobody knows at the moments.
Sincerely,
GyulaGyula SzászModeratorDear Bill,
You see, all the learned standards of the so called “modern physics” are removed within my theory. Therefore, the resistances of physical journals are gigantic.
Gyula
Gyula SzászModeratorDear Bill,
The description of Nature requires handling of non-conservative, non-closed physical systems without known inertial conditions. This problem can only be solved within the Lagrangian formalism, for instance in order to get the equations of motions.
The Hamiltonian formalism which is based on energy expressions and on energy conservation is not able to deliver the handling of such important physical problems. For instant, I use only the conservation of elementary charges instead of the conservation of energy. No, H is not more fundamental and not more general. I use neither E = hν, nor the energy mass equivalence principle E = mc^2.My theory is a quantum field theory with only quantized charges as the sources of the interacting fields. The energy is not quantized.This new quantum field theory has unified the electromagnetism and the gravitation. The interacting fields propagate with c.
The gravitation is neither universal mass attraction, nor it is a deformation of space-time. The gravitation is caused by conserved elementary gravitational charges of stable particles. And the gravitational masses are different from the inertial masses of bodies.
Gyula
- This reply was modified 8 years, 11 months ago by Gyula Szász.
- This reply was modified 8 years, 11 months ago by Gyula Szász.
Gyula SzászModeratorUnfortunately, the editors and reviewers of the physical journals, Phys. Rev., EJPC, ZNA and Foundation of Physics could not begin somewhat physically with my new quantum field theory and rejected all my emitted articles. Therefore, the new theory came not in the circulation of physical science.
A comparison of quantum field theories
The currently used quantum field theories quantize the energy and the interaction with the Planck constant h and the special relativity theory states the energy-mass equivalence relation, E = m∙c^2. I have defined another kind of quantum field theory in which only the sources of the interactions are quantized. The energy and the interactions are not quantized and the energy is not equivalent the mass. We have obviously to do with two physically quite different kinds of quantum field theories.
I collect the key features of the new quantum field theory:
– The sources of the interactions are the conserved elementary charges. We know two kinds of elementary charges, they are the elementary electric charges qi = {± e} and the elementary gravitational charges gi = {± g∙mi}. Assumption: Physically no more elementary charges exist.
– The elementary charges generate two kinds of continuous fundamental interaction fields which propagate with c. These fields are at the presence of charges non-conservative and the two fields are independent from each other, they do not influence each other. The universal gravitational constant is G = g^2/4π.
– The elementary charges are distributed on four stable elementary particles, e, p, P and E. Each particle has two kinds of elementary charges. The elementary pariticles are the electron (e), the positron (p), the proton (P) and the elton (E). The elton is usually called as “antiproton”. Assumption: Physically no more stable elementary particles exist.
– The masses me and mP are the elementary masses of electron (e) and proton (P). The inertial and the gravitational masses of the elementary particles, e,p,P,E, are in each case equal and only for the stable elementary particles are the inertial and the masses equal. Assumption: These stable particles are not composed of any other particles.
– There exists a general uncertainty: neither the positions, nor the velocities of the elementary particles can be ever exactly observed. Infinitely large and infinitely small relative distances between particles do not belong to a physical description.
– Time and space are homogeneous and the space is isotropic. Because the interaction propagation with c the time and space are connected; the Minkowski space describes the connectivity of space and time.Results of my new quantum field theory:
An action integral
I = ∫Ω L(x) (dx)^4 (1)
can be constructed in finite ranges {x}εΩ of Minkowski space with the key features. The elementary charges, qi and gi, generate the vector fields A(em)ν(x) and A(g)ν(x). The Lagrange density L(x) is the sum of the free particles parts, of the free fields parts constructed with the Faraday tensors, F(em)νμ, F(g)νμ, and of the interaction parts
L(int)(x) = + j(em)ν A(em)ν(x) – j(g)νA(g)ν(x), (2)
whereby j(em)ν and j(g)ν are the probability density currents of the charges. All parts of L(x) are constructed Lorentz-invariantly. Since all parts of L(x) are caused by the conserved elementary charges the action integral does not depend on the boundary conditions of the surface of Ω containing some numbers of particles, Ni. The action integral is not an expression of energy. Within Ω there exist different kinds of subsidiary conditions, one kind for the fields and another kind for j(em)ν and j(g)ν. The subsidiary conditions of the fields are known as Lorenz conditions. The Lorentz conditions express that the fields propagate with the constant velocity c within Ω. With these subsidiary conditions for the fields and applying the Hamilton principle on the action integral, I, we get the Maxwell equations for the fields. The Maxwell equations for the electromagnetic field and the gravitation field differ only on the sign of the probability density currents of the charges.
The determination of the equations for the particle motions
In order to get a Lorentz-invariant action integral, we put for the particles parts in the Lagrange density, L(x), the continuity equations of particle numbers, ji(n)ν(x), for i=e,p,P,E, multiplied by the constants mi∙c
L(p)(x) = Σi=e,p,P,E mi∙c∙∂ν ji(n)ν(x). (3)
Additionally, the subsidiary conditions of the particles, Gi, are to be considered at the variation
Gi = ∫Ω ∂ν ji(n)ν(x) (dx) 4 = 0, i=e,p,P,E. (4)
Before we perform the variation we must express the j(n)ν (x) in a quadratic form, with the Dirac spinors and with the γν matrices
j(n)ν (x) = c ⋅ Ψi(x) γν Ψi(x). (5)
Ψi(x) = Ψi(x) γ0 are the adjoin spinors to the spinors Ψi(x) and the expression Eq. (5) has the correct transformation behavior under Lorentz transformation. γ0 γ0 = 1 is the unit four matrix. We have to use the spinors because neither the positions, nor the velocities of the particles are ever exactly known. Furthermore, the Noether charges
∫V Ψi(r,t) γ0 Ψi(r,t) d^3x = ∫V Σj=1,4 Ψ*i,j(r,t) Ψi,j(r,t) d^3x = Ni, i=e,p,P,E (6)
are used for the normalization of the spinors for each volume V and at each time t. The sum j is taken about the four components of the four dimensional spinor. Applying the Hamilton principle we get the equations of motions for the particles expressed with the spinors. The stationary of the variation of I, considering the subsidiary condition, Gi,
δI + Σj Σi=e,p,P,E λj∙δGi = 0, (7)
cause the appearance of Lagrange multipliers, λj, in the Euler-Lagrange equation of the spinors in using independent variations of the adjoint spinors Ψi(x) and Ψi(x) for each particle i=e,p,P,E.
Bound states of elementary particles
In order to get temporary stationary bound state of elementary particles, we have to consider conditional probabilities for particle density currents relative to center of mass system (COM) in the mutual fields of the particles: we are looking for the temporary stationary solutions for the particles and the mutual fields. The conditional probabilities depend on the relative distances of particles. Since the particle number conservations are further valid, the appearance of Lagrange multipliers, λi, is expected. Thus, the temporal stationary conditions are connected with the Lagrange multipliers in such a way that the probabilities to find particles in distances relative to COM are temporally stationary and the relative currents vanish. Simultaneously, the mutual interacting field is also temporary stationary. On this point enter the relativity in the physical description. We have to express the action integral, I, and the subsidiary conditions, Gi, relatively to COM. Thus, we have to use the spinors as conditional probabilities of particle density currents with relative coordinates. The finite range Ω must contains the unique point of COM. Generally, temporary stationary solutions of the variation for a λi are given with different values of an additional positive real parameter E. The largest possible discrete value of E belonging to a λi are labeled as the ground state with the bound energy E0(λi). The bound energies are always negative, therefore, we label with the positive E0(λi) the negative of the bound state energies. Generally, a set of discrete values of the parameter E exists with
E0(λi) > E1(λi) > E2(λi) > E3(λi) …. > 0 (8)
for each λi. A bound state is generally a superposition of temporary stationary solutions. Nevertheless, we don’t speak about energy quantization at the relation (8) because this superposition is connected not only to temporary stationary mutual fields, but also to the simultaneous presence of radiation component of the field. Bound states emit always radiation with continuous submission of radiation energy, until the energy E0(λi) is reached.
The physical interpretation of the bound state problem
We have to describe the problem of the capture of an electric charged particle, i, with the elementary mass, mi, in the electric field of other moving particles with elementary charges qj = { ± e} with the elementary masses {me, mP}. Thereby we know neither the initial positions, not the initial velocities of the particles (for instance for the captured electron by atoms). Generally, electric charged particles moving in an electromagnetic field radiate always electromagnetic waves and the waves (the fields) propagate with c. According to the subsidiary conditions of the particles, Eq. (4), Lagrange multipliers, λi, are appearing in the equations of particles motions and these constants ensure temporally stationary solutions at some real values Ei(λi) of the whole problem. Mathematically, we have to solve four coupled differential equations of the first order in space with the normalization conditions, Eq. (6), for the particles. Since the spinors describe the probability density currents of particles, in the four components of the spinors, Ψi,j(r), j=1,4, the three components of the velocities are coded. The result is finally the determination of the bound energies Ei(λi) of the particle system for the temporary stationary case. In the following we shall write for simplicity E0(λi) = E(bound) for the ground state belonging for one λi. and rename λi. with h.
Fortunately, in the case of two-particle systems we have the possibility to say something about the relative velocity and about the relative distance of the ground state of particle systems in the mutual temporary stationary interaction as a function of E(bound) and of the reduced mass m’ = mi∙mj/(mi+mj), without solving explicitly the variation problem.
For the Planck constant h, which describe the atomic shells, there exists an old expression set up by Sommerfeldh = e^2/2c∙(m’∙c^2/2∙E(bound))^1/2 = e^2/2c∙1/α, (9)
for the hydrogen atom, where m‘ = me∙mP/(me+mP) ≈ me is the reduced mass of electron and proton and the bound energy of the ground state energy is E(bound) = 13.8 eV. However, in the current quantum mechanics is not understood why α = v/c has a value of α = 1/137.036. v is the relative velocity of the electron. With the same relation for h, Eq. (9), the positronium problem can also be determined with the energy of the ground state, E(bound; positronium) = 13.8/2 eV = 6.9 eV, since the reduced mass is m’ = me/2. We shall use the relation, Eq. (9), for each two-particle-systems with the opposite signs of electric charges in order to get other values for h, if we have different reduced masses m’ and different ground state energies, E(bound). With other words, we have with Eq. (9) a simple way to get expressions of the values of the constant h in cases of two-particle-systems. For two-particle-system we have the expression for the inertial mass
mi = mi + mj – E(bound)/c^2.
In case of an electron-positron system, (e,p), if we use the condition for the bound state that the inertial mass is zero, mi = 0, we have the condition
2∙me = E(bound)/c^2.
Since the inertial mass, mi, cannot be negative, this states the lowermost bound energy of the (e,p)-system. Setting this equation and the reduced mass m‘(e,p) = me/2 in the relation, Eq. (9) for h, we get another value
h0 = e^2/2c∙(1/8)^1/2 = h/387. (10)
Thus, we get a much smaller value for h0 as the Planck constant h. The relative velocities of the bound particle (e,p) can be calculated for instance according
(v/c)/(1-(v/c)2) = (2∙E(bound)/(me∙c2).
Since in the case of (e,p), we have two particles with the same mass, we must set in the half of the ground state energy, E(bound), in order to get (v/c) = 0.894. The particles move with the velocity 89.4% of c. We label this state of the electron-positron system as the electron-neutrino, νe = (e,p); the neutrino has as well the inertial as the gravitational mass zero.
We have also a simple relation for the calculation of the relative distance of particles, of the size of the ground states radii,r = h^2/(4∙π2∙m’∙e^2), (11)
For the electron-neutrino, νe, we get r(νe) = 0.703∙10^-13cm. Besides the (e,p)-system, we can also calculate with h0, Eq. (10), for the (P,e), (p,E) and (P,E)-systems the ground state energies, the relative velocities and the sizes. The ground state energies of the (P,e), (p,E) are 2.04 MeV. The ground state energy of the (P,E)-system is E(bound) = 2∙mP∙c^2. The size are d(P,e) = 2∙r(P,e) = 0.702∙10^-13cm and the same size appear also for the (p,E)-system. With the h0 calculated ground state of (P,E) we get a size of r(P,E) = 0.383∙10^-16cm: we label this state as the proton-neutrino, νP = (P,E). According to the finite sizes of two-particle ground states, we can state: in the interaction of elementary particles no singularities can occur and particles with the same mass don’t annihilate.
In opposition to Einstein’s energy-mass-equivalence, E = m∙c^2, the electron-positron and the proton-elton pairs do not annihilate at their merging in our theory. The energies of particle systems and the electromagnetic interaction are not quantized with E = h ν in our new quantum field theory. The new quantum field theory is an atomistic theory of matter based on the four kind of stable particles e, p, P and E with the conserved charges qi and gi.Unfortunately, the transmission of upper and lower indexes does not work. Double appearing indexes are summed.
Gyula I. Szász
- This reply was modified 8 years, 11 months ago by Gyula Szász.
- This reply was modified 8 years, 11 months ago by Gyula Szász.
Gyula SzászModeratorDear Bill,
You asked the question whether the electromagnetic and gravitomagnetic interactions (forces) become one in the very strong field. First of all, they become not one!The interaction between particles is always the addition of electromagnetism and gravitation. For instance for proton/elton the static gravity is (g∙mP)^2/e^2 ≈ 10^-42 time weaker than the static electric force and it is independently of r. For electron/positron we have the relation (g∙me)^2/e^2 ≈ 3.4∙10^-36. The r-dependence of both static forces is 1/r^2. Since the condensed matter is either proton-based, or elton-based, the relation of electromagnetism and gravitomagnetism depends of the mass density of matter and the density of the motions of the particles, that is mainly the density of protons/eltons and the density the static magnetic momentums of the bound two-particle systems. In the following we want consider the proton-based condensed matter. In very strong gravitational potential, at very high mass density of condensed matter and in case of uncoordinated magnetic momentums of the neutrons, we have to calculate the relation of the static gravity of the neighbor protons and the electric force of the elementary electric charge, e.
It should be noticed that during the static gravitational forces of neighbor protons are added together, the static electric forces neutralize itself. The addition of gravitational forces of the protons with a constant proton density, ρ, since the force is 1/r^2 dependent, is an integration of 1/r^2 about the whole space from the distance, d, of the neighbor protons to a big radius, R. The situation is similar to the inner of a hollow sphere. The static gravitational force is zero, however, the gravitational potential has a big constant value within the sphere.
Since the particles cannot approach to each other too close, two kind of “maximal mass density” can be derived.
The one kind of density follows from the sizes of stable neutron N0 = (P,e) and of the electron-neutrino νe = (e,p), The sizes are 0.702∙10^-13 cm, respectively 0.703∙10^-13 cm. The gravitational mass, mg, of these two-particle systems are mg(N0) = mP – me ≈ mP and mg(νe) = 0. If we calculate that in a cube with the side length 10^-13 cm there is one N0 and the cubes are dense packed, the mass density is
ρ(mg(N0)) ≈ mP/(10^-13 cm)^3 = 1.67∙10^-27/10^-36 kg/cm^3 = 1.67∙10^+9 kg/cm^3.
This is the mass density of neutron-stars. The gravitational potential within the neutron star is constant, however has a big value. The static gravitational force is zero. The relation of the static gravity force to the static electric force of e would be the same as given above.
Another situation arises for the mass density if we calculate the mass density for the size of the proton-neutrino, νP = (P,E) and for the size of the (P,e)-system, whereby the bound (P,e)-system would have the bound energy E(bound) = (mp + me)∙c^2. The sizes are 0.383∙10^-16 cm, and 0.382∙10^-16 cm, respectively. The gravitational mass of the (P,e)-system is mg(P,e) = mP – me ≈ mP and of the neutrino mg(νP) = 0. If we calculate that in a cube with a side length of 10^-16 one bound (P,e)-system resides, the mass density would be
ρ(mg(P,e)) ≈ mP/(10^-16 cm)^3 = 1.67∙10^-27/10^-48 kg/cm^3 = 1.67∙10^+21 kg/cm^3.
The relation of the static gravity to the static electric force would be the same as above; however, a considerable greater constant potential term must be added.
At both extreme situations for mass density dominate the static electric force about the static gravitational force.We can also calculate the mass density of normal matter if we assume one proton is in a cube with side length of 10^-9 cm (approximately the distance between atoms with the sizes somewhat greater than 10^-8 cm)
ρ (matter) ≈ mP/(10^-9 cm)^3 = 1.67∙10^-27 kg /10^-27 cm^3 = 1.67 kg/cm^3.
In matter the static electric force dominate over the static gravitation force.
The presented calculations were simple for an orientation about the relation of the static electric and static gravitation force in any cases, using the knowledge of the sizes of two-particle system, I have given, and with the knowledge of the five natural constants, c, e, mP, me and g =(4∙π∙G)^1/2. The most experimental uncertainty is with g which can be calculated with the CODAT value of the universal gravitational constant G. However, the true value of G is 1.5% smaller than the CODATA value of G.
However, we did not have calculated until now the possibility of coordinated static magnetic momentums. Such a situation exists in nature; they are the pulsars, the quick rotated neuron stars. The calculation is not easy. For instance we must make some assumption about the thermodynamically situation of the star; about the temperature distribution within the neutron star. In any case, the static magnetic momentum of the instable neutron N = (P,e,p,e) is experimentally known, and the static magnetic momentum of the stable neutron N0 = (P,e) can be calculated.
————————————–
I am expecting from my students that they learn, beside my conceptual simple theory I am teaching, to think self-employed. I am somewhat impatient if I recognize that they didn’t have learned, or are unable, thinking self-employed. I don’t expect that they should not make errors. Self-employed thinking means self calculations with simple inputs of my theory.Simultaneously, I know that the overwhelming number of researcher in physics, in any case all reviewer of physical journals I have met, obviously cannot think self-employed. They are ready to accept theories of authoritarian researches, no matter if the theories are stupid or not. But, they cannot think independent and self-employed and they don’t criticize the accepted theories.
I am Hungarian. In our country the most people think broadly independent. Sometimes two people have tree different meaning. Authority is less asked in the own meaning. Probably, the Hungarian language is the dept. In this language you can formulate complicated things in a very easy exact fashion. You are not forced to use detrimental and complicated grammatical rules. I have another meaning about physics as the Hungarians Loránd Eötvös, J. v. Neumann, Wigner and Teller thought. In any case, I have another meaning as Planck, Einstein, Heisenberg, Feynman and the other authoritarian physical researches thought. And I have enhanced also the simple gravitational theory which Kepler, Galileo and Newton have left us over.
I am thinking, my theory is conceptual very simple. Furthermore, the theory is mathematically and physically consistent and correct. And I use only appropriate mathematical tools. Occam’s razor which I use is very sharp. Therefore, I believe that my theory describe Nature comprehensively. “Nature does nothing in vain.” said Sir Isaac Newton.
Sincerely,
Gyula- This reply was modified 8 years, 12 months ago by Gyula Szász.
- This reply was modified 8 years, 12 months ago by Gyula Szász.
Gyula SzászModeratorWithout the rejected false quantum theory of Planck and Einstein, I could calculate the physical properties of the bound two-particle-systems, (P,e), (p,e), (p,E) and (P,E). All these systems correspond to attractive electromagnetic interactions between the particles. The calculations give the bound energies, the sizes, the relative velocities of the particles in the bound states and the inertial and gravitational masses of the two-particle systems. I must not use the variation calculus explicitly, but, I have used the Lagrange multipliers h and h0 for each two-particles-system. For instance at the usage of h0, the smallest approach of the particles in (P,e), (p,E) and (P,E) are 0.382 ∙10 ^-16 cm and for (e,p) there is 0.703 ∙10 ^-13 cm. Therefore, we can conclude, a singularity does not occur in the particles interactions.
Of course, we can also use the variation calculus to determine the concrete probability distribution of residence of the particles with h0 for all bound particle systems, such as for the stable neutron, for the instable neutron, for deuteron and so forth for all nucleon-systems and for instable particles. For these calculations there is only the electromagnetic interaction needed with h0 and with the elementary masses mP and me and of course, with the number of the elementary particles building the bound states. The result would be the intrinsic structures of atomic nuclei and the intrinsic structures of instable particles.
The inertial masses of the particle system are experimentally well known, in these appear the also the number of (e,p)-pairs. On the other side, the gravitations masses do not contain the numbers of the (e,p)-pairs. The full structurally information of the particle systems derived from the variation calculus determine also the number of the (e,p)-pairs.
- This reply was modified 8 years, 12 months ago by Gyula Szász.
Gyula SzászModerator“What’s left is to unite electricity and the so-called strong force, and then your theory will be no less than a new and complete standard model.”
Good news, Bill: there is no need for the strong interaction!
Since several Lagrange multipliers exist, not only one, the processes in the nuclei can be explained and described with “another kind of Planck constant” h0 and the value is h0 = h/387.
This h0 is also responsible for the decay of the instable neutron N
N =(P,e,p,e) → P + e + (e,p) = P + e + νe; the νe is an electron-neutrino.
I notice: the strong- and the weak interaction do not exist in Nature! Only the electromagnetism and the gravitation exist in physics as interactions. The strong interaction must not unite to the electromagnetism and the gravitation.
My theory is a complete new “Standard Model of Physics”.
- This reply was modified 8 years, 12 months ago by Gyula Szász.
- This reply was modified 8 years, 12 months ago by Gyula Szász.
- This reply was modified 8 years, 12 months ago by Gyula Szász.
Gyula SzászModeratorDear Bill,
I think, I have said clearly what I mean. I have the impression, you don’t understand or/and you don’t reflect to my clear arguments. I am considering the end of our discussion is coming. I don’t respond more, until you could give me a significant new argument for discussion, and I decide what is significant. The entropy argument is not significant,
Sincerely,
GyulaGyula SzászModeratorDear Bill,
Once more again: we have obviously to do with two different kinds of quantum field theories.
In the currently accepted quantum theory the energy (or with the ad hoc assumption of Max Planck the action, 1900) AND the interaction (with the ad hoc assumption of the light quantum hypothesis, Einstein 1905) are quantized. A mysterious constant, the Planck constant h, appear in the physical description.
Max Planck tried for a long time to avoid his ad hoc “quantum condition” and to replace it with some physical founded relation. Einstein did not believe, 1909, on the accident brought in the physics through his ad hoc hypothesis. Feynman, a creator of the quantum electrodynamics (QED), said „Ich glaube, mit Sicherheit behaupten können, dass heutzutage niemand die Quantenmechanik versteht.“ In my translation: „I believe to claim with safety that nowadays nobody understand the quantum mechanics. “ Surely, no quantum physicist understands why the fine structure constant α hat the value 1/137.03. α is appearing in the Planck constant h.I have proposed another kind of quantum field theory: Only the sources of the interaction fields are quantized (with the stable elementary particles, or with other words: with two kinds of conserved charges.) In the action integral, two different kinds of subsidiary condition must be applying for the fields and for the particles. The mathematical consequence for the subsidiary condition for the particles is the appearing of Lagrange multiplier in the equations of particles motion, and only in these equations. Hence, the role of the Planck constant h in the case of bound states is that it is a Lagrange multiplier. With other words: the h does not appear ad hoc, and h does not appear in the equations of fields motions. Neither the action (the energy), nor the interaction is quantized in my quantum field theory.
Therefore, I contradict the ad hoc assumptions of Max Planck and of Albert Einstein, I reject their quantum theories.
You write “There is no purely mathematical reason for quantization of fields nor any of the other false quantizations either. Certainly, there are good reasons, like the double-slit experiment and the discrete spectrum of atoms, to be tricked into believing that the false quantizations are real, but tricks are neither physics nor are they mathematics; they are illusions; they are caused by the real quantizations… the quantization and conservation of electric and gravitational charges, as you profess.”
Neither the double-slit experiment, nor the discrete spectrum of atoms, nor anything else justifies physically the “false quantization” of Planck and Einstein.
Gyula SzászModeratorThe elementary electric and gravitational charges are quantized. The electric charge of electron is measured as – e, the electric charge of proton and positron are measured as +e. The elementary gravitational charge of electron is – g me, the elementary gravitational charge of proton is + g mP and of positron is + g me. The charges as sources of the fields are quantized. Why? Only the Nature knows is, why.
The fields are continuous functions of r and t which have discrete sources (= the elementary charges). The fields obey the Maxwell-equations as equation of motions for continuous functions. There are no physical reasons to assume that these fields are quantized.
Gyula SzászModeratorThe (statically) interactions between particles behave like
qi∙qj/4π (ri-rj)^2.
But, the singularity at a small relative distance, ri → rj, or with other words, the singularity of
1/r^2 for r → 0,
cannot occur in the interactions.
Gyula SzászModerator“In your theory, the real-quantities are (e,P,p,E) which
quantize the electric and gravitational charges and fields.”No!
I my theory are only the charges are quantized, the fields are not quantized. The fields have continuous nature. Infinity does not occur in the interactions of particles. The charges are invariants and quantized and conserved.Gyula SzászModeratorAnother comment to Anton Zeilinger:
Der amerikanisch Physiker Richard Feyman hat bezüglich der akzeptierten Quantenphysik dies einmal folgendermaßen formuliert: „Ich glaube, mit Sicherheit behaupten können, dass heutzutage niemand die Quantenmechanik versteht.“
Natürlich nicht! Es sind nur Konventionen was die moderne Physik befolgt, ohne einen physikalischen Hintergrund.
Mit kollegialen Grüßen,
Gyula I. SzászGyula SzászModeratorA comment of me to Anton Zeilinger’s book „Einsteins Schleier; Die neue Welt der Quantenphysik“.
Lieber Herr Zeilinger,
Sie schreiben in Ihrem Buch „Einsteins Schleier; Die neue Welt der Quantenphysik“ im Abschnitt „Abschied vom Gewohnten“:
„Wir haben ja bereits gelernt, dass Max Planck selbst nach einer anderen Erklärung suchte, die ohne die Quantenhypothese aus kommt – natürlich vergeblich.“
Nicht „natürlich“!
Nur Max Planck, und auch die anderen Physiker, Sie auch nicht, haben daran gedacht, dass man bei der Variation des Wirkungsintegrals über einem endlichen Gebiet des Minkowski-Raums Randbedingungen und Nebenbedingungen für die Felder und für die Teilchen berücksichtigen muss. Die Berücksichtigung von Nebenbedingungen der Teilchensysteme ergeben Lagrange Multiplikatoren, und die Planck Konstante h ist so ein Lagrange Multiplikator. Also, h ist nicht ein „Wirkungsquantum“; es quantelt weder die Energie von Teilchen, noch quantelt h das elektromagnetisches Feld.Die moderne Physik kam auf den Holzweg seit Max Planck das Wirkungsquantum im Jahre 1900 eingeführt hat.
Die eigentliche Quantenphysik baut auf gequantelten (erhaltenen) Ladungen der Elementarteilchen, in dem nur die Quellen der Wechselwirkungen gequantelt sind, die Wechselwirkungen jedoch bleiben ungequantelt.Einsteins Schleier verschleiert sich immer noch die Augen der Physiker, auch Ihre Augen: sie merken es immer noch nicht, dass die richtige Quantenphysik auf die stabilen Elementarteilchen e, p, P und E basiert.
Mit kollegialen Grüßen,
Gyula I. Szász -
AuthorPosts