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The pillars of modern physics stand in stalemate. A revision is needed of the Standard Model of
particle physics and the General Theory of Relativity. Undeniable and irreconcilable discrepancies
in physics are herein taken as an opportunity to develop an Atomistic Theory of Matter which is
intuitively, consistently and mathematically correct. Contradictions appear throughout the history
of theoretical physics, and persistently observed deviations from Newton's theory of gravity indicate
that a new theory is necessary. This is strengthened by logical deliberations, e.g. the �nding that
all microscopic objects are invariably smaller than the wave lengths of their radiations. A new
set of plausible fundamental physical hypotheses form an innovative view on Nature by solving
the Variation Problem in order to derive the equations of motion. In physics a fundamental �eld
(Uni�ed Field - UF) is to be centralized. It consists of the electromagnetic �eld and the Lorentz
covariant gravitational �eld, generated by four kinds of sources. The sources (or, quanta) of the
UF are represented by the four stable particles: electron (e), positron (p), proton (P) and elton (E,
negative charged proton) which carry two kinds of Maxwell-charges - the known electrical and an
gravitational. The UF is a non-conservative �eld and propagates with the constant velocity c. The
equations of motion for the particles contain some constants: Planck's constant h still describes
the atomic shell but at a second basic constant h0 = e2/2c · 1/

√
8 = h/387.7 can be assigned to

describe the nuclei, neutrinos and the unstable particles. The formulation of an Atomistic Theory,
in contrast to the Einstein's Energetic Theory, is a successful attempt to clarifying the unsolved
questions in physics with a much simpler approach (compared to Quantum and Quark Theories,
curved space, String Theory, etc.).

INTRODUCTION

Modern physics faces a problem: both central theories
� Einstein's General Theory of Relativity, (which deter-
minate our understanding of gravity and the relativistic
theory of energy, [1]), and the Standard Model of parti-
cle physics, (which describes the physics of microscopic
quantum particles,[2],[3],[4]). cannot consistently explain
Nature. Experimental observations reveal a huge diver-
sity of deviations from both theories; this underlines the
problems. Fritz Zwicky observed in the 1930s that the
galaxies in the Coma Cluster move quicker than New-
ton's Theory predicts. Astronomer Vera Rubin, in the
1960s, discovered a similar discrepancy when investigat-
ing the Andromeda Galaxy and formulated the Galaxy
Rotation Problem. The discrepancy could be assigned
to the existence of �Dark Matter�, which is assumed to
account for 95% of all matter and energy in our Universe.
At the scale of our own planetary system, deviations

from Newton's Theory can also be identi�ed. First, a mi-
nor anomaly is found in the prediction of the Mercury's
perihelion, which advances 42.98 arc seconds per century.
This speci�c case is attributed to Einstein's General Rel-
ativity. A more signi�cant discrepancy is shown when
precisely measured data for the movement of the nine
planets (including Pluto), [5], is collected to calculate
the �constant� in Kepler's Third Law. Here we �nd devia-
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tions of 0.15%, where we ought to obtain a constant value
from the relation R3/T 2. A simple calculation of this was
performed by the author and can be found in [6]. This
issue is not discussed in literature and Einstein's Theory
of Gravity is unable to explain these rather large devi-
ations in the motions of planets. Also, astrophysicists
cannot satisfactorily explain �Black Holes�. Our most
prominent astrophysicist, Hawking, most recently stated
that: �A full explanation of the process would require
a theory that successfully merges gravity with the other
fundamental forces of nature. But that is a goal that has
eluded physicists for nearly a century. . . �, �The correct
treatment,� he continues, �remains a mystery�, [7].
This article hopes to shed light on these discrepancies;

it is therefore closely correlated to our understandings
of gravity. A fundamental step in this is the melding
of gravity with electromagnetism. This is performed by
a rather stream-lined Atomistic Theory of Matter based
on two kinds of elementary Maxwell-charges of the stable
elementary particles. In this theory, well known mathe-
matical concepts such as the Lagrange Formalism, which
delivers the equation of motions, were followed to derive a
description of Nature within a Uni�ed Field (UF) of both
�elds � gravitational and electromagnetic. A prerequi-
site for this theory is a new set of basic hypotheses, each
with a reasonable character. These will be presented in
the following. Their consequences are far-reaching; they
explain the already mentioned astronomic discrepancies
and shed light on the microscopic objects: nuclei, neu-
trinos as bound states and (known) unstable particles.
Also, the so called �Dark Matter� is not needed for the
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understanding of the Universe.

ATOMISTIC THEORY OF MATTER

The New Set of Basic Hypotheses on the Atomistic
Theory of Matter

1. One fundamental interaction �eld exists with uni-
�ed propagation: Only one Lorentz covariant fun-
damental interaction exists, consisting of the elec-
tromagnetic �eld and the covariant gravitational
�eld in the �nite region Ω of the Minkowski space.
The �eld is non-conservative and has �nite, con-
stant propagation with the value c, see [8�10]. The
isotropic cosmic microwave background radiation
(CMBR) is to be taken as frame of reference. This
fundamental �eld is called the Uni�ed Field (UF).

2. The elementary particles (EP): Only four kinds
of stable, point-like particles exist, with only two
kinds of Maxwell-charges. They are the particles
electron (e), positron (p), proton (P) and elton
(E). The elementary particles are not composed of
smaller, constituent particles (e.g. quarks). These
particles quantize the sources of the Uni�ed Field
and generate the �eld.

3. The physical properties of the elementary parti-
cles: The elementary particles are unmodi�able
objects in space-time � they can be neither an-
nihilated nor created. They are invariant objects
in the Minkowski space. The elementary particles
have two kinds of elementary charges. The charges
cause the electromagnetic and the gravitation �eld.
The elementary electric charges qi, as well as the
elementary gravitational charges gi, have two signs.
The absolute value of the e-charges, e, is the same
for all four particles. But the absolute value of the
g-charges is only equal for e and p, and respectively
for P and E. The amounts of g-charges, gi of the el-
ementary particles are proportional to the invariant
masses (to the rest masses in the isotropic CMBR)
me ormP : electron (e): g1 = −g ·me, positron (p):
g2 = +g ·me, proton (P): g3 = +g ·mP , elton (E):
g4 = −g · mP and mP /me = 1, 836.152672. The
universal gravitational constant is G = g2/4π, pro-
portional to the square of the speci�c gravitational
charge g of the four elementary particles. This arti-
cle shall use this index convention of the elementary
particles.

4. Basic restrictions on physical descriptions: The
physical description of Nature is limited to �nite
space-time domains, and all physical systems are
open systems.

5. The property of the space-time continuum: In �-
nite space-time domains, Ω, space and time are

homogeneous, the space is isotropic. There ex-
ists a unique Riemann's type metric uniquely de-
termined by the UF propagation, c, in �nite do-
mains of the (3, 1) dimensional space-time contin-
uum. Between particles the invariant distances un-
der Lorentz transformation are given by the prop-
agation constant, c, in the Minkowski space. The
distance is derived from the expression:

(s)2 = xαx
α = (x1 − x2)2 + (y1 − y2)2

+ (z1 − z2)2 − c2 · (t1 − t2)2 (1)

The invariant in�nitesimal distance ds is de�ned by

(ds)2 = dxαdx
α = (dx)2 + (dy)2 + (dz)2 − (c · dt)2(2)

Additional basic assumptions:

6. Uncertainty principle: The position AND veloc-
ity of elementary particles are principally indeter-
minable. This hypothesis is more fundamental and
more general than Heisenberg's uncertainty rela-
tion with Planck's constant h.

7. Separation principle: A separation principle exists
for single elementary particles in very small space
time distances and for many particle systems in
very large space-time distances. The relative dis-
tances are de�ned via Eq. (1).

Consequences of the Basic Hypotheses

The author discussed the consequences of these hy-
potheses in [11] (and in detail in, [6], [12], [13], [14],
[15], [16]). From these hypotheses originated the Atom-
istic Theory of Matter based on the four stable elemen-
tary particles e, p, P and E; the particles move in the
non-conservative Uni�ed Field. Since the self-published
work was not widely circulated, this article collects and
presents the main �ndings. The conditions of particle
movement are also given in this article, originally omit-
ted in [11].
The masses, me and mP used in these Basic Hypothe-

ses are invariant masses. They are simultaneously the
rest mass and the gravitational mass of the elementary
particles. We have to distinguish between a particle's
inertial mass mi and the invariant (gravitational) mass
mg. The inertial mass mi grows if the particles move
with velocity near the propagation velocity of the UF.
The gravitational mass mg is connected to the invari-
ant gravitational charges and they do not change in any
physical reaction. Therefore, our theory does not sup-
port the weak equivalence principle, [17], the equivalence
of inertial mass mi and gravitational mass mg, nor the
equivalence principle of energy and mass, E = m · c2, [4].
The gravitational masses me and mP are not equivalent
to energy and the inertial masses of atoms mi(A,Z) are
less than the sum of the masses of the constituents, [18],
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[11]. Furthermore, in open, �nite regions of space-time
Ω, the non-conservative UF does not allow the use of
energy conservation as a central principle of a physical
system. Therefore we propose the atomistic picture of
matter in Nature and not the energetic one.
Since the beginning of the 20th century mainstream

physics has operated on an energetic basis [2], [3], [4],
[1], [19]. We have also revised Newton's theory of motion
in gravity (17th century) to the e�ect that the inertial
mass is unequal to the gravitational mass of macroscopic
bodies.
The set of Basic Hypotheses leads to a new model

for description of Nature, in which few of the historical
collected scienti�c assumptions of physics are retained.
These are:
- Newton's law of static gravitational force,
- the existence of elementary electric charges,
- the propagation of light with c,
- the existence of the stable particles composing atoms

and nuclei,
all described by the Maxwell equations. Furthermore,

all microscopic objects are essentially smaller than the
characteristic wave lengths of their radiation (see Figure
1.). Therefore, the dominance of the wave character of
the electromagnetic �eld has to be accepted in all micro-
scopic processes to describe the phenomenon of light, and
not a corpuscular behavior via light quantum [2], [14],
[20], [21], [22], [23], [24]. This means that the Maxwell
equations for the electromagnetic �eld remain valid up
to all levels of microscopic scale.
An entirely new hypothesis is additional: of the exis-

tence of elementary gravitational charges, which is inte-
gral part of the Atomistic Theory of Matter. Einstein
published an atomistic feature on the molecular-kinetic
theory of heat, [25], but he completely changed his theo-
retical orientation in his other publications, [1�4], in the
direction of an energetic one. My Atomistic Theory and
Einstein's special and general relativistic are essentially
di�erent. They give a very controversial explanation of
Nature. A crucial di�erence also exits between the ex-
planations of the observed gravity generated by the el-
ementary gravitational charges, [12] and the description
of gravity within the General Theory of Relativity [1].
The New Theory, based on the seven basic hypothe-

ses, leads to a mathematically correct theory and (I be-
lieve) represents the physical laws of Nature. The electro-
magnetic �eld is described in Minkowski space with the
widely accepted Maxwell equations, in terms of the four-
vector potential A(e)β of the e-�eld and the four-vector
electric current density j(e)β ; see [26],

∂α∂
α

A(e)β = +j(e)β ; (3)

A(e)ÿ = (φ(e)/c,A(e)), j(e)β = (c·%(e), j(e)) is used with

∂βj
(e)β = 0, (4)

the continuity equation, the conservation of e-charges
and

∂βA
(e)β = 0, (5)

the Lorenz gauge, the conservation of the e-�eld prop-
erties. All quantities depend on xα = (t, r)ε Ω.
The abbreviation, e-�eld, denotes the electromagnetic

�eld. The equation for the motion of the e-�eld is a re-
sult of the Hamilton principle applied to the Lagrangian
of the e-�eld with the subsidiary condition Eq. (5) in
a �nite space-time domain, Ω, of the Minkowski space.
The Lorenz gauge is to be considered in the variation cal-
culus as a subsidiary condition. The frame of reference
is the isotropic CMBR. It is assumed that the Maxwell
equations hold in each microscopic region.
The gravitational �eld is also caused by elementary

Maxwell-charges, therefore, in complete analogy to elec-
tromagnetism, we can treat the Lorentz covariant gravi-
tational �eld (g-�eld) in terms of the four-vector potential
A(g)β and the four-current density of the g-charges with
j(g)β on each point of the Minkowski space, in a �nite
space-time domain, Ω. The equation for the motion of
the g-�eld is, [11],

∂α∂
α

A(g)β = −j(g)β ; (6)

A(g)ÿ = −(φ(g)/c,A(g)), j(g)β = (c · %(g), j(g)) is used
with

∂βj
(g)β = 0, (7)

the continuity equation, the conservation of g-charges
and

∂βA
(g)β = 0, (8)

the Lorenz gauge, the conservation of the g-�eld prop-
erties. The only di�erence between Eq.(3) and Eq. (6) is
the minus sign.
All equations (3)-(5) and (6)-(7) are written in Lorentz

invariant form, i.e. they have de�nite transformation be-
havior under Lorentz transformation; they are Lorentz
vectors or scalars. With the elementary charges qi and
gi the charge current densities j

(e)β and j(g)β

j(e)β =
∑
i=1,4 j

(e)β
i ,

j(g)β =
∑
i=1,4 j

(g)β
i ,

and the charge current densities of the particles j
(e)β
i

and j
(g)β
i can be expressed with the particle current den-

sities j
(n)β
i of the four particles, i = 1, 4;

j
(e)α
i = qi · j(n)αi = qi · (c · ρ(n)i , j

(n)
i ), (9)

and
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Figure 1. The sizes of microscopic objects with the smallest wave lengths of their electromagnetic radiations. The ionization
of an atom means the ionization of the last (Z-1) electron. The sizes of the neutrinos, νe= (e,p) and νP= (P,E), and of the
neutron, N0 = (e,P), are calculated with h0 . The size of the electron is also drawn at ∼ 10−18cm, as the limit up to which this
particle is considered to be point-like. Hamilton has reconciled the corpuscular theory of light with the Eikonal theory in the
geometrical optic with the wave motion, provided that the wave length is smaller than the size of the medium which in�uence
the wave. According to the Eikonal theory, this representation illustrates that the �eld quantization of the electromagnetic
�eld with photons is prohibited, as used in the accepted Quantum Electrodynamics (QED).

j
(g)α
i = gi · j(n)αi = gi · (c · ρ(n)i , j

(n)
i ). (10)

They are probability densities. The elementary parti-
cles are capable of being di�erentiated by their elemen-
tary charges.
According to (3) and (6) all moving bodies described

with j(e)β and j(g)β simultaneously radiate electromag-
netic and gravitational rays. The e-�eld and g-�eld are
connected by the two kinds of invariant Maxwell-charges
of the four stable EPs. The propagation of gravity with
c is experimentally supported, [8], [9], [10].

The �eld tensor (the Faraday tensor) of the e-�eld
F (e)λρ can be expressed with A(e)β , [26]

F (e)λρ = ∂λA(e)ρ − ∂ρA(e)λ. (11)

With an analogous technique the �eld tensor of gravi-
tational �eld, F (g)λρ can also be expressed with the vec-
tor potential A(g)β of the g-�eld, in [11]

F (g)λρ = ∂λA(g)ρ − ∂ρA(g)λ. (12)
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The gravity part of the Lagrangian can be also con-
structed in complete analogy to F (e)λρ, A(e)β and j(e)β

with F (g)λρ, A(g)β and j(g)β . As a consequence of the two
kinds of elementary Maxwell-charges of the particles the
vector �eld A(e)β and A(g)β contributions must always
be added in the UF Theory.
The elementary charges are de�ned by the volume in-

tegral of the charge densities and Gauss's theorem and

deliver the surface integrals of the static e-�eld E
(e)
i and

the static g-�eld E
(g)
i , whereby the closed surface, S, en-

closes a small �nite volume V containing only one EP i,
[26]. The two kinds of elementary charges of the four EP
are at a time t = t0

ˆ
V

ρ
(e)
i d3r =

ˆ
V

∇ ·E(e)
i d3r =

z

S

E
(e)
i · ds = +qi,(13)

with values
qi = −e,+e,+e,−e; i = 1, 4.
Furthermore, for the electric charge conservation hold

the continuity equations with particles of the same kind
i

− ∂

∂t

ˆ
V

ρ
(e)
i d3r =

z

S

j
(e)
i · ds, (14)

For the gravitational charge conservation apply the
equations for one particle i

ˆ
V

ρ
(g)
i d3r =−

ˆ
V

∇ ·E(g)
i d3r

= −
˛

S

E
(g)
i · ds = gi (15)

with values
gi = −g ·me,+g ·me,+g ·mP ,−g ·mP ; i = 1, 4
and with particles of the same kind i

− ∂

∂t

ˆ
V

ρ
(g)
i d3r =

z

S

j
(g)
i · ds. (16)

With Eqs. (13) and (15) follow due to the elementary
charges, Eqs. (9) and (10), the continuity equations for
the particle current densities

− ∂

∂t

ˆ
V

ρ
(n)
i d3r =

z

S

j
(n)
i · ds, (17)

The Eqs. (13) - (17) hold for any time. If the volume
V contains at the time t = t0 more elementary particles
of the kind i, it then follows that

ˆ
V

ρ
(n)
i d3r = +ni, (18)

ni is the particle number in V of particle kind i = 1, 4.
These are the quantum conditions for particle numbers

ni, the fundamental equations of the Atomistic Theory
of Matter.
As the Eqs. (13), (14) and (15), (16) due not depend of

the surface S, these lead also to natural boundary condi-
tions on the surface of a �nite region of Minkowski space
Ω. The constant values of the volume integrals qi and gi,
combined with Eq. (18), give �isoperimetric� subsidiary
conditions for particle �eld variations. The term isoperi-
metric is used in the Lagrange theory, [27], meaning an
integral kind of subsidiary conditions, notably with �xed
boundary conditions. For this manner of problem some
constants appear in the Euler-Lagrange equation of mo-
tion: they are called Lagrange multipliers. In our case
the charge conservation also deliver integral subsidiary
conditions for particle numbers, Eq. (18), but with nat-
ural boundary conditions. It is a free boundary problem
with a volume constraint. We do not have a special no-
tation for this situation; therefore we could use the nota-
tion �isoperimetric�. The values of the integrals Eqs. (13)
and (15) do not depend on the closed surface, S, which
contains ni charges, Eq. (18); the values of charges of
ni particles are independent from the boundary. Proba-
bly the notation �isopretii� (isopetric = isovalued) would
more precise describe the mathematical problem. The
Atomistic Theory of Matter produces isopetric problems
in the calculus of variation.
In order to �x the signs of the elementary charges and

their relations to the �elds we use test charges.
A positive sign convention for e-charge and the g-

charge of the proton gives, if we use another electric
charge q and gravitational charge g, the so called test
charges

E
(e)
i = FCoulombi /q = +qi · r/(4πr3),

E
(g)
i = FNewtoni /g = −gi · r/(4πr3).

qi = +e; gi = +g ·mi; i = 3.
These �x also the signs of all other elementary charges.

The gravitational �eld E
(g)
i and the force FNewtoni is di-

rected towards the proton with a positive g-charge. That
means protons attract each other with their gravitational
force. Between particles with opposite sign of the g-
charges, such as proton and elton, a repulsive gravita-
tional force exists, between particles with the same sign
of g-charges the gravity is attractive. The minus sign
in the equation of motion of the g-�eld, Eq. (6), take
care for this circumstance in contrast to the equation of
motion of the e-�eld, Eq, (3) where a plus sign appears.

Neutron, Neutrinos and Electric Neutral Composed
Systems

The existence of two kinds of elementary charges ex-
plains the microscopic properties of particle systems.
N.B. due to the weakness of gravity compared to elec-
tromagnetism, the in�uence of A(g)β on the EP can only
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be experimentally studied with electrically neutral parti-
cle systems.
In a small �nite volume, V , the forms of electrically

neutral two-particle systems are only: (e,P), (p,E), (e,p)
and (P,E). Since the static electric force is only attractive
between EPs of these two-particle systems, only these
basic two-particle systems are able to form bound states.
Only these two-particle systems can deliver stationary
bound solutions of the Lagrangian in an Atomistic The-
ory of Matter. The net g-charges of these basic two-
particle systems have the values
g(e,P ) = +g · (mP −me), g(p,E) = −g · (mP −me),
g(e,p) = 0, g(P,E) = 0.
Therefore, the corresponding gravitational masses of

these systems are
mg = mP −me, for N0 = (e,P) and N0 = (p,E);
mg = 0, for νe= (e,p) and νP= (P,E).
The (e,P)-system constructs the hydrogen atom and

the stable neutron N0; they are special bound states
(stationary ground states). The N0 exists at a much
lower energy as the hydrogen atom. The (p,E)-system
constructs also bound states: the elton-hydrogen and the
stable elton-neutron, the N0. In traditional physics the
elton-hydrogen is called �anti-hydrogen� and the elton-
neutron is called �anti-neutron�, but we do not use these
notations. Furthermore, nuclear physics has not con-
�rmed stable neutrons N0 and stable elton-neutrons N0.
Nuclear physics only recognizes the unstable neutrons
which are not elementary particles. The gravitational
mass for both systems (e,P) and (p,E) is
mP −me,
however, the net gravitational charges for both systems

have opposite sings.
In Atomistic Processes the sum of elementary parti-

cle masses, from which a particle system is composed,
remains constant. The net gravitational charge also re-
mains constant, which is proportional to the gravitational
mass of the composed system, as long as all particles re-
main in a �nite small region of the space-time, Ω. Be-
cause the gravitational charges of proton and elton have
opposite signs, we have to ascertain whether a composed
system contains more protons than eltons or vice versa.
For simplicity, we now calculate the gravitational mass
of a composed systems which don't contain eltons. It is
composed of NP protons, a particular number of elec-
trons Ne and positrons Np. The gravitational mass for
this microscopic system is:
mg(NP ,Ne,Np) = NP ·mP +Np ·me −Ne ·me > 0.
In electrically neutral composed systems, such as elec-

trically neutral atoms, the number of electrons Ne must
be equal to the sum of the number of protons and
positronsNe =NP +Np . For electrically neutral atoms
the gravitational mass is simple:
mg(NP ) = NP · (mP −me).
NP is the mass number of atom A = NP and the

number of positrons Np disappears.
The number Np, which is also the number of (e,p)

pairs, is the only unknown parameter in the structure

of nuclei with a (P,e,p) composition. However, the iner-
tial mass also contains Np. Generally, in the rest frame,
the inertial masses of a composed bound system (such as
nuclei, but without elton) are equal to the sum of all ele-
mentary masses minus the bound energy, Ebound, divided
by c2

mi(composed−system) =
∑
j=1,4 Nj ·mj−Ebound/c2.

Einstein also suggested this relation, but the gener-
alization down to E = m · c2 could be argued against,
[4]. The number of (e,p) pairs, together with a con-
stant h0, produce the so called �nuclear forces� (see
below). For electrically neutral atoms the two masses
mg(A) and mi(A,Z) are obviously di�erent. And they
di�er in the sum of the masses of the composing par-
ticles

∑
j=1,4 Nj · mj . The bound energy can also be

phenomenological calculated with the experimentally ob-
served mi(A,Z) and with

∑
j=1,4 Nj ·mj , whereby Z is

the nucleus charge.
Since the net gravitational masses of the bound sys-

tems (e,p) and (P,E) are zero, they appear as electrically
neutral AND �mass-less� (see Pauli's proposal, 1930, on
the process of β decay). Aside from the positronium and
elton-positronium, special bound states will be identi�ed
with two kinds of basic neutrinos, the electron-neutrino
at much lower energies
νe= (e,p)
and the proton-neutrino
νP= (P,E).
In the case of neutrinos, the sums of elementary masses

are 2 ·me and 2 ·mP . Assume that the bound energies
Ebound of the neutrinos are equal to the corresponding
value of the sum of elementary masses times c2. It would
then follow that not only the gravitational masses are
zero but the inertial masses are ALSO zero. Since the in-
ertial mass cannot be negative, these special bound states
are the lowest energetic levels of the (e,p) and (P,E) sys-
tems. The energies 2 ·me · c2and 2 ·mP · c2 are radiated,
but the corresponding two particles remain existent: the
elementary particles are invariant objects. Only in these
circumstances should we speak about neutrinos νe and
νP . This situation is one of the main di�erence to Ein-
stein's energetic theory.
From the state of the neutrinos we can derive the value

of a second constant, h0, for the motion of particles in
a much smaller space region. This is analogous to the
role of Planck's constant, h, for the hydrogen atom, the
positronium and the elton-hydrogen. The value h0 is
387.7 times less than the value of the Planck's constant
h and is independent of the elementary masses, as shown
below.
It is well known that the value of h can be (approxi-

mately) calculated with the bound energy of a hydrogen
atom at ground state
Ebound = 13.5984eV,
and with the reduced mass of the electron-proton sys-

tem
m

′

ep = me ·mP /(me +mP )
to
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h = e2/2c ·
√
m

′
eP · c2/2 · Ebound = e2/2c · 1/α. (19)

This relation was discovered by Arnold Sommerfeld,
who interpreted

α =
√

2 · Ebound/m
′
eP · c2

as the velocity of the electron in the hydrogen atom
ground state in units of c. The h describes also the
positronium ground state of the electron-positron sys-
tem, close to energy of 6.8eV [28]. Similar to the cal-
culation of h from the energetic lowest ground state of
the (e,p) and (P,E)-systems, which are the neutrinos, a
second constant h0 can be calculated. One can de�ne
the value of the mass independent constant h0 with the
reduced masses
m

′

ep = me/2, and m
′

PE = mP /2
and the bound energies of ground states
Ebound−ep = 2 ·me · c2 and Ebound−PE = 2 ·mP · c2,
[13], according the Eq. (19)

h0 = e2/2c · 1/
√

8. (20)

Analogous to the role of h, the h0 describes both the
neutrinos and the stable neutron N0 as ground state of
the electron-proton system, respectively. The h0 also de-
scribes N0, the ground state of positron-elton system.
Futhermore, h0 describes the sizes of the neutrinos and
also of N0 and N0 . Contrary to traditional physics, the
electron and positron do not annihilate each other, nor
do the proton and the elton. These particle pairs cannot
be generated in the Uni�ed Field. So we do not speak
about particles and antiparticles. The h and h0 will play
the role of Lagrange multipliers in the equations for the
motion of particles in the Minkowski space as we will
show later.
The Planck's constant h determines via the well known

relation the distances of particles in the ground state

rground−state = h2/πe2m
′
, (21)

thus the sizes of the ground states of hydrogen and
positronium. With h0 and with the corresponding re-
duced masses of the stable neutrons and of the neutrinos
the sizes of these objects can be calculate
rN0 = 0.702 · 10−13cm,
rN0 = 0.702 · 10−13cm,
rνe = 0.703 · 10−13cm,
rνP = 0.383 · 10−16cm.
Note that the size of N0 (this is the diameter) is near

the size of the electron-neutrino νe[13], (see also Table I.).
Both are in the nuclei size range which is somewhat larger
than 10−13cm and both are observed in nuclei decay ex-
periments alongside protons, electrons and positrons. It
is a strong indication that h0 plays an important role in
the processes of the nuclei and that h0 is responsible for

the commonly termed �nuclear forces�. The �strong inter-
action� of the Standard Model is not required as a fun-
damental interaction in the production of nuclear forces:
the electromagnetic force does it with h0 and with the
electron-neutrino νe. The Planck's constant h does not
play a role in nuclear processes.
According to Eqs. (19) and (20), the calculated bound

energy of the neutron in the ground state is
E0(N0) = h2/(h0)2 · 13.59eV = 2.04MeV .
The velocity of the electron in the ground state of an

H-atom v/c, in unity of c , is

α =
√

2 · E0(hydrogen)/m
′
eP c

2 = 1/137.036.

In the stable neutron N0 the electron moves in a highly
relativistic way

(v/c)2/(1− (v/c)2) = 2 · E0(N0)/m
′

eP c
2 = 7.98,

with the relativistic velocity v/c = 0.94, that is 94% of
the velocity of light.
The size of the proton-neutrino νP is much less than

the size of N0, νe and those of the nuclei, due to the
larger mass mp compared with me, see Table I.

The Static Law of Gravity between two Microscopic
or Macroscopic Objects

The static electric force F(e)(r) between two net elec-
tric charges q1 and q2 is given by Coulomb's law. The
static gravitational force F(g)(r) between two net grav-
itational charges g1 and g2 is de�ned by Newton's law.
For �nite relative distances r =| r | we have

F(e) = +
q1 · q2
4πr3

r, (22)

F(g) = −g1 · g2
4πr3

r = ∓G·m
g
1 ·m

g
2

r3
r, (23)

G = g2/4π is Newton's universal constant of grav-
ity derived from the same speci�c gravitational charge g
of the four stable elementary particles. The sign ∓ ap-
pears in F(g) because the gravitational charge has two
signs and we will always use gravitational masses with
the condition that mg ≥ 0. In the Atomistic Theory of
Matter, gravity is not universal mass attraction. In the
case of an electron, F(e) is roughly a factor of ≈ 3 · 10+42

greater than F(g). In this theory, in the case of a (P,e,p)
condensation of matter, for electric neutral atoms with
the mass number A and nuclear charge Z, the relative
mass defect ∆(A,Z), can be phenomenological calcu-
lated with experimental data mi(A,Z), [18] and with
mg(A) = A · (mP −me). In Table II. the most frequently
occurring isotopes of some chemical elements are listed.
One can establish that

1% > ∆(A,Z) = (mg(A)−mi(A,Z))/mi(A) > 0;
only when hydrogen is ∆ < 0.
∆(A,Z) 6= 0, thus the relative mass defect is not zero

and dependent on A and Z. The discrepancy between
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Table I. Collection of the Values of Constants in Universe

Velocity of light and gravity c 2.99× 1010cms−1

Elementary electric charge e 1.703× 10−9g1/2cm3/2s−1

Electron mass me 9.11× 10−28g

Proton mass mp 1.67× 10−24g

The ration of elementary masses mp/me 1836.152

Gravitational constant [2] G 6.57× 10−8g−1cm3s−2

Speci�c gravitational charge g 0.908× 10−3g−1/2cm3/2s−1

Elementary gravitational charge of proton g ·mp 1.52× 10−27g1/2cm3/2s−1

The rations of electric and gravity force e2/g2m2
p 1.255× 1036

Planck's constant h 6.62× 10−27g cm2s−1

The second constant h0 1.71× 10−29g cm2s−1

Minimal wavelength, hydrogen radiation λcutoff (λH−Atom > λcutoff ) 0.912× 10−5cm

Bohr `s radius of hydrogen atom rH 0.529× 10−8cm

Size of stable neutron (diameter) rN0 0.702× 10−13cm

Size of electron-neutrino rνe 0.703× 10−13cm

Size of proton-neutrino rνp 0.383× 10−16cm

Maximal mass density mp/(10
−13cm3) ρmax(ρNeutronstar < ρmax) 1.67× 1015g cm−3

Minimal time distance rνP /c 1.27× 10−27s

Maximal detectable distance RΩ 1010 light year ≈ 1030cm

Loschmidt number NL 2.686× 1019cm−3

Boltzmann constant k 1.380× 10−14g cm2s−2K−1

Temperature of background radiation TCMBR calculated with h 2.725K

Absolute zero temperature 0K −273.15◦C

inertial and gravitational mass in atoms transfers these
properties to macroscopic bodies with di�ering compo-
sitions of chemical elements. Therefore, the equation
of motion for macroscopic bodies with the inertial mass
mi(body) and gravitational massmg(body) in the gravita-
tional �eld of a second body with the gravitational mass
Mg, if the g-charges of both bodies have the same sign

mi(body) · a(body) = F(g) = −G·M
g ·mg(body)

r3
r,(24)

o�ers a composition dependent relative acceleration
a(body) with a0 = −G · M

g

r3 r

a(body) =a0 ·mg(body)/mi(body) =

a0/(1−4(body)) ≈ a0 · (1 +4(body))(25)

The Atomistic Theory of Matter modi�es Newton's
2nd law with the static gravitational force and is able to
explain the 0.15% deviation of Kepler's �constant� in the
orbits of planets that are principally composed of very
di�erent materials [12]. Within a gravitational �eld iron
has the largest acceleration and hydrogen the smallest.
The acceleration di�erence between these materials is al-
most 1%. It should be noted that, the inner planets are
Fe/Ni-planets; the outer gas-planets contain much hy-
drogen. The deviation of the value of the ration R3/T 2

between Mars and Uranus is 0.15% [6]. On the other
hand, the minor anomaly in the movement of the Mer-
cury's perihelion ought to be explained with the �gravity
Lorentz force�, similar to the Lorentz force on the move-
ment of electric charges [11] but we are still waiting on a
concrete calculation.

A violation of the Universality of Free Fall (UFF) was
identi�ed by the author by means of a fall experiment
in a vacuum tube from a height of 110 m using di�erent
chemical elements, [16]. This study could be extended,
provided access is granted to the drop tower at the Uni-
versity of Bremen. On the other hand, Einstein's Theory
of Gravity can neither explain the deviations of Kepler's
�constant�, nor abnormal galactic rotation. The Eq. (25)
with

4(body) < 1%,

holds so long as the velocities of the bodies are much
less than the propagation of the UF c and that the re-
tarded e�ect of the �eld does not play a role over the
relative distances between bodies. Over small distances
disturbances of the e-�eld also play a role (Eötvös exper-
iment, see below).

Einstein's Theory of Gravity is based on the equiva-
lence of inertial and gravitational mass, which seems to
be con�rmed by torsion balance measurements. Conse-
quently Einstein eliminated the gravitational mass from
physics. At the beginning of the 20th century the exper-
iments of Loránd Eötvös seem to measure the equality
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Table II. Mass Defect of Isotopes

Composition of
the Nuclei

Gravitational
Mass [amu]

Isotope Mass
[amu]

Name Relative Mass
Defect [%]

Mass Nr.

[1P + 1e 1.006727885 1.00782443 1
1H −0.109 1]

2P + 2N 4.026911540 4.002603250 4
2He 0.607 4

3P + 4N 7.047095195 7.016004049 7
3Li 0.441 7

4P + 5N 9.060550965 9.012182135 9
4Be 0.534 9

5P + 6N 11.074006735 11.009305466 11
5 B 0.584 11

6P + 6N 12.080734620 12.000000000 12
6 C 0.668 12

7P + 7N 14.094190390 14.003074005 14
7 N 0.647 14

8P + 8N 16.107646160 15.994914622 16
8 O 0.700 16

9P + 10N 19.127829815 18.998403205 19
9 F 0.677 19

10P + 10N 20.134557700 19.992440176 20
10Ne 0.706 20

11P + 12N 23.154741355 22.989769675 23
11Na 0.713 23

12P + 12N 24.161469240 23.985041898 24
12Mg 0.730 24

13P + 14N 27.181652895 26.981538441 27
13Al 0.736 27

14P + 14N 28.188380780 27.976926533 28
14Si 0.750 28

15P + 16N 31.208564435 30.973761512 31
15P 0.752 31

16P + 16N 32.215292320 31.972070690 32
16S 0.755 32

17P + 18N 35.235475975 34.968852707 35
17Cl 0.757 35

18P + 22N 40.269115400 39.962383123 40
18Ar 0.762 40

19P + 20N 39.262387515 38.963706861 39
19K 0.761 39

20P + 20N 40.269115400 39.962591155 40
20Ca 0.761 40

21P + 24N 45.302754825 44.955910243 45
21Sc 0.767 45

26P + 30N 56.376761560 55.934843937 56
26Fe 0.784 56

79P + 118N 198.325393346 196.96655131 197
79 Au 0.685 197

80P + 122N 203.359032770 201.97062560 202
80 Hg 0.683 202

82P + 208N 209.399400080 207.97663590 208
82 Pb 0.679 208

92P + 146N 239.601236630 238.05078258 238
146U 0.647 238

of mg(body) and mi(body), con�rmed the parity with an
uncertainty of 5·10−9, taking the composition of the bod-
ies into account. Since that time more accurate Eötvös-
experiments have been performed, [17]. All of them
seemed to con�rm the weak equivalence principle. How-
ever, when the Newtonian universal constant of gravityG
is measured with the same experimental arrangements a
much larger uncertainty is rendered (1998 CODATA sets
the uncertainty at 0.15%). The gravity physicists are
aware of this problem, but in spite of questioning the ex-
perimental con�rmation of the weak equivalence principle
they seem to accept the uncertainty. The physicists do
not take into account the electromagnetic disturbance of
the surrounding matter in the Eötvös-experiments, they
do not analyzed the discrepancy in the measurement ofG
and those of mg(body)/mi(body). In [11], the problem is
examined from a number of considerations. Further fall
experiments from a great height using di�erent materials
(which are very rarely performed) will clarify the correct-
ness or the violation of the weak equivalence principle in
Nature. Further such experiments have been scheduled
by the author and the results will be published.
In the Atomistic Theory two kinds of relative mass

defect can be de�ned. The �rst concerns gravitational
mass; this de�nition 4(body) is used in the afore men-
tioned equation of motion. The second mass defect is cal-
culated respective to the sum of masses of the constitut-
ing particles. In nuclear physics, 4nuclear−physics(atom),
this second kind is used

mi(atom) =
∑

Ni ·mi − Ebound/c2.
In nuclear physics the relative mass defect is used rel-

ative to the mass number A with the result

4nucler−physics(atom) =
{∑

Ni ·mi −mi(atom)
}
/A

= Ebound/c
2A < 9MeV/c2.

However, the neutron, when part of a nucleus, is con-
sidered in nuclear physics as an elementary particle and
for its mass the inertial mass of the unstable neutron,
mi(N), is incorporated in the calculation. But the un-
stable neutron N consists of four elementary particles:
of one proton, two electrons and one positron. The weak
decay of neutron is

N= (P,e,p,e)→ P + e + (e,p)-neutrino = P + e + υ
e
.

The inertial mass is mi(N) = 939.5653MeV/c2=
mp + 3 · me − Ebound(N). The inertial mass of N is
greater than the proton mass mP = 938.2720MeV/c2.
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The gravitational mass of N is the same as that of N0:
mg(N) = mP − me = 937.72321MeV/c2 . The inverse
beta decay may also sometimes refer to the process e +
P→ N +ve can never occur in Nature. The phenomeno-
logical calculation of the relative mass defect of nuclei as
used in nuclear physics is inadmissible.
The static law of gravity can also be considered at each

electric neutral two-particle system. Only the (e,P) and
(p,E)-systems have non-zero static gravitational forces
F(g) to each other:

F
(g)
(e,p),(e,P ) = F

(g)
(p,E),(p,E) = −G· (mP −me)

2

r3
r, (26)

F
(g)
(e,P ),(p,E) = +G· (mP −me)

2

r3
r, (27)

Between the (e,P)- and (p,E)-systems the gravitational
�eld produces a repulsive static gravitational force, thus
the Newtonian force between an (e,P)- and a (p,E)-
system is repulsive. It should be noted that: the sin-
gularity in Eq. (26) and (27) at r → 0 cannot appear
in the interactions: The h0 prohibits distances between
(e,P), (p,E) and (e,p) smaller than 0.702 · 10−13cm and
between (P,E) distances less than 0.383 · 10−16cm (see
also the �separation principle of particles� in the basic
assumptions).

Remaining Role of �Dark Matter�

In Nature two kinds of matter condensation seem to
exist. The �rst is only formed with the particles (P,e,p);
this is �our world�, a proton based world. The second
would be (E,p,e), an �elton based world�. In traditional
physics the second kind of matter is called antimatter,
but we do not use this notation. Between bodies of these
two kinds of condensed matter, a repulsive gravitational
force would exist. This explains why the co called �an-
timatter� is so rarely encountered in our planetary sys-
tem and most probably in our galaxy. Perhaps our next
galaxy, the Andromeda, is an elton based galaxy. A con-
densation of matter formed of all four EP seems not to
exist. Nevertheless, there are also composed particle sys-
tems, classi�ed as �neutrino-like aggregates�, which do
contain all four EPs.
The two mass-less neutrinos υe and υP exert neither a

static electric nor a static gravitational in�uence on each
other or to all other EP-systems. A notation �Dark Mat-
ter� allows the descriptions for the deviation of observed
phenomena from Newton's theory of gravity based on
the two signs of gravitational charges. In the Atomistic
Theory the �Dark Matter� could constitute free �ying
neutrino-like aggregates which can only build small parti-
cle aggregates, for instant a υeP = (P,e,p,E)-system. But
the neutrino-like aggregates cannot form condensed mat-
ter. The electric-charged elementary particles split the
neutrino-like aggregates. Even the composite-neutrino

υeP , can be splitted into the two basic neutrinos, (see
the decay of charged unstable myons,) [13],
µ− =(e, υeP ) →e + νe+νP ,
µ+ =(p, υeP ) →p + νe+νP .
The observed decays of unstable particles seem to con-

�rm the situation that the structures of the composite
unstable particles contain more electrically and gravita-
tional neutral particle systems, existing in the form [13]

(n · (e, p),m · (p,E)), with n + m ≥ 1.
Generally, the gravitational mass and inertial mass of a

composed stable or unstable particle system with proton
excess NP > NE can be calculated as
mi = (NP −NE) ·mP + (Np −Ne) ·me,
mi =

∑
Ni ·mi�Ebound/c

2.
The gravitational mass for a particle system with elton

excess, NE > NP is
mg = (NE −NP ) ·mP + (Np −Ne) ·me.
As the variation principle of particle systems is to

be set up in �nite regions of the Minkowski space with
non-conservative �elds, the Lagrange formalism also has
quasi-stationary solutions for unstable particle systems
with complex values E − iΓ; with E ≥ Γ > 0 (see the
earlier investigation of the author in [20] - [24] and [29]).
The Γ de�nes the life-time of the unstable state, i.e. for
the unstable neutron or for the charged myons. Decaying
unstable particles are not elementary particles.
For neutrino-like aggregates NP = NE and Np = Ne,

the gravitational mass is zero
mg(neutrino− like) = 0.
The inertial mass of these aggregates is mi(neutrino−

like) ≥ 0 (and it might be also zero).
�Dark Matter�, in these terms, is composed of all these

tiny, electric and gravitational neutral particle systems in
the sub-nuclear range. The stable neutrons N0 and N0
with their very low reactions rate could be also counted
to �Dark Matter�. �Dark Matter� is present throughout
Nature, and even pervade our experimental equipment.
This implies that even the best physical vacuum in labo-
ratories would always contain �Dark Matter�, composed
of neutrino-like aggregates. This all-pervasive nature of
�Dark Matter� should therefore always be taking in ac-
count when interpreting scattering experiments at ener-
gies greater than approximately 1MeV , i.e. above the
separation energy of the electron-neutrinos.
Experiments on the decay of nuclei have only shown

the elementary particles: electrons, positrons and pro-
tons as decay products. The νe = (e, p) neutrinos are
also present in the β decay and also the unstable neutron.
But according to literature, elton (E), elton-neutron N0
= (p,E), the proton-neutrino νP = (P,E) as well as the
unstable elton-neutron (p,e,p,E), are not referred to as
products of nuclear decay in experimental nuclear physics
(or at least, have not been, to date). Of course, the inter-
action of our proton based nuclei with eltons, contained
in the composite neutrino-like aggregates of �Dark Mat-
ter� cannot be excluded. And if they were to interact, the
results would theoretically be the creation of short-lived
unstable nuclei containing eltons. It would be worthwhile
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to investigate these phenomena theoretically and exper-
imentally.

Interim Summary

The Atomistic Theory of Matter explains deviations
from Newton's gravitation, so the notation �Dark Mat-
ter� is so far unnecessary. We also do not need hypothet-
ical particles characterized by incredibly short life-times
and huge energies as predicted by the relativistic �eld
theories of the Standard Model (e.g. the Higgs-Boson) to
explain the origin of masses of stable/unstable compos-
ite particles. The masses are determined by the invariant
masses of the constituent parts and by their bound en-
ergies. The problem of quantum gravity is also resolved:
gravity is caused by elementary (quantized) gravitational
charges and not by gravitons. The Big Bang would also
be unnecessary for the global generation of the cosmos;
the four kinds of stable particles were always there. The
Atomistic Theory of Matter also incorporates gravity
in fundamental microscopic processes. It does not re-
quire string theories and 11-dimensional space-time con-
structions to reconcile the inconsistent pillars of modern
physics when describing physical processes at the scale
of less than 10−30 centimeters. The Atomistic Theory of
Matter can explain many of the inconsistencies of main-
stream energetic based physics.

VARIATION FORMULATION OF THE UF AND
PARTICLES IN A FINITE SPACE-TIME

DOMAIN Ω

Now, we have outlined all the required conditions
and properties of the components of the variation.
The Lorentz invariant Lagrange density for the non-
conservative interaction can be established. The invari-
ant (dx)4 can also be de�ned as invariant in�nitesimal
element with the metric of the Minkowski space. In the
Lagrange Formalism, arranged in �nite domains of the
Minkowski space, the Euler-Lagrange equations provide
the equations of motion for the described system. In the
Atomistic Theory of Matter the Lagrange Formalism is
accomplished by natural (free) boundary conditions and
by an isopetric subsidiary condition for the particles.
The Hamilton's Eikonal theory prohibits light corpus-

cles in each microscopic process, see Figure 1. Therefore
in the Lagrange Formalism the classically understood
electromagnetic �eld is to be accepted in all elementary
processes. Thus we adopt the quantization of the source
of the UF instead of the quantization of the �eld itself,
with virtual �eld particles [13], [30].
The quantum condition of the four EPs in a �nite vol-

ume V is derived from the charge conservation originated
from the charge densities of the particles i = 1, 4

j
(e)α
i (x) = qi · j(n)αi (x) = qi · (c · ρ(n)i (x), j

(n)
i (x)),(28)

and

j
(g)α
i (x) = gi · j(n)αi (x) = gi · (c · ρ(n)i (x), j

(n)
i (x)),(29)

whereby j
(n)α
i is the four-vector particle current den-

sities of particles of kind i which ful�ll the continuity
equations. The continuity equations

− ∂

∂t

ˆ
V

ρ
(n)
i (r, t)d3r =

z

S

j
(n)
i (r, t) · ds, (30)

lead to the quantum conditions of particle numbers in
the Atomistic Theory of Matter

ˆ
V

ρ
(n)
i (r, t)d3r = +ni, (31)

ni is the number of particles i in V , i = 1, 4 at a
time t = t0. The Eqs. (31) are the isopetric subsidiary
conditions for the variation of the particle �elds.
Over time the decline of particle i in �nite volume V

is given by the �ow of particles i through the surface,
S, enclosing the �nite volume, V . From the Eq. (30),
multiplied with the invariant mass of the particle i, we
obtain the equations of motion. For this we must take
into account that we only know that the particle i was
in volume V, and that we neither know the precise lo-
cation, nor the precise velocity of the particle. The in-
tegrals in Eq. (31) deliver the subsidiary conditions for
the variation of the Lagrangian, in order yield the Euler-
Lagrange equations of the particles, i.e. to derive the
equations of particle motion. These conditions are called
�isopetric� conditions, and cause the appearance of some
additional constants: the Lagrange multipliers, see [27].
The continuity equations Eqs. (4) and (7) with Eq. (17)
connect the subsidiary conditions with the natural (free)
boundary conditions for each kind of particles i in a �nite
domain of the Minkowski space Ω. The conservation of
both Maxwell-charges and the conservation of the parti-
cle numbers are equivalent statements.
The natural boundary conditions mean that the

boundary does not in�uence the physical statements,
whatever the surface in Ω is. These boundary conditions
also re�ect the fact that the interaction between particles
is performed via elementary Maxwell-charges, Eqs. (13)
and (15). With forms of inter-particle interactions other
than the Maxwell-charges, the independence of physics
from the boundary would generally not be valid.
The action integral I, for interacting particles with two

kinds of elementary Maxwell-charges, which generate the
Uni�ed Field (UF), is to be established by the Lorentz-
scalar Lagrange density

L(x) =LT (x)− LUF (x)

= LT (x)− L0(x)− LInt(x). (32)
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The Lagrange density consists of a kinetic part for par-
ticles LT (x) and the part of the Uni�ed Field LUF (x).
LUF (x) contains the source free part L0(x) and the in-
teraction part between �eld and particles LInt(x). The
LUF (x) depends on A(e)α(x) and A(g)α(x), and LInt(x)
additionally on the charge current densities j(e)α(x) and
j(e)α(x)

I =

ˆ
Ω

(dx)4{LT (x)− L0(A(e)α(x), A(g)α(x))

−LInt(A(e)α(x), A(g)α(x), j(e)α(x), j(g)α(x))}(33)

in a �nite space-time domain Ω. The integration only
runs for time-like distances. To simplify the written ex-
pression, we neglect x sometimes as argument; we know
that each �eld quantity depends on x.
The source free part L0(x) of the Lagrange density can

be represented as
L0(A(e)(x), A(g)(x)) =

−F (e)
λρ (x)F (e)λρ(x)/4− F (g)

λρ (x)/F (g)λρ(x)/4

= L0(A(e)(x)) + L0(Ag(x)),
by the Faraday tensors. The LInt(x) can be expressed

by A(e)α(x), A(g)α(x) and by j(e)α(x), j(g)α(x). Further,
the both current densities can be expressed by the two
kinds of elementary charges qi and gi and by the particle

current densities j
(n)α
i (x) of the four kinds of particles,

j(e)α(x) =
∑
i=1,4 qi · j

(n)α
i (x),

j(g)α(x) =
∑
i=1,4 gi · j

(n)α
i (x).

The interaction of the particles and the �elds is de-
scribed by the couplings of the particle current densities
via the elementary charges qi and gi and the particle cur-

rent densities j
(n)α
i (x) to the corresponding vector �elds

A(e)α(x) and A(g)α(x)

I =

ˆ
Ω

(dx)4{LT (x)− L0(A(e)α(x))− L(0)(A(g)α(x))

−
∑
i=1,4

(qi ·A(e)
α (x)− gi ·A(g)

α (x)) · j(n)αi (x)} (34)

In Eq. (34) all terms of the Lagrange density are
Lorentz scalars. The Lorentz scalar LT (x) will be given
later at the variation of the particle �elds. Please note
that with Eq. (34) we do not follow Einstein [3], who
described (in a very simpli�ed way) the electrodynamics
motion of a charged electron. In the traditional Relativis-
tic Quantum Field Theory the Sommerfeld's �ne struc-
ture constant a is considered to be the coupling constant
of the electromagnetic interaction, which determines �the
strength of the electromagnetic force� on the electron!
The well-known variations, respectively the �eld

quantities A(e)(x) and A(g)(x) separately, lead to the
(Maxwell) equation of motion of the �elds with the
source free part L0(x) and the interaction part of the La-
grange density LInt(x), including both electromagnetic
and gravitational �elds. The LT (x) does not depend on
A(e)(x) and A(g)(x). The variation of both fundamental

�elds can be performed separately, as the electromagnetic
and gravitational �eld do not in�uence each other.

δ |A(e)=

ˆ

Ω

(dx)4
{
LUF (A(e)α(x), j(e)α(x))

}
, (35)

δ |A(g)=

ˆ

Ω

(dx)4
{
LUF (A(g)α(x), j(g)α(x))

}
, (36)

The variations in Eqs. (35), (36) give the equations of
motion for both �elds; for the electromagnetic (3) and
the gravitational (6) �elds according to the Hamiltonian
principle. For the variation both �eld quantities A(e)(x)
and A(g)(x) must additionally ful�ll the subsidiary con-
ditions: the Lorenz gauge in Eqs. (5) and (8). If I can
presume to answer the Hawking quote in the Introduc-
tion: the merging of gravity with the other fundamental
force, the electromagnetic force, is not a mystery.
In our Atomistic Theory of Matter the motion of the

gravitational �eld caused by the elementary gravitational
charges Eq. (10) is described with Eqs. (6) - (8) in
Minkowski space. This has not been considered previ-
ously. The consequence is, that we do not follow Ein-
stein's weak equivalence principle to the extent that as-
cribing electromagnetism to a curvature of space-time
would be required [1]. Furthermore, Black Holes lack
proof or basis. These are only consequences of Einstein's
theory of gravity and are purely theoretical constructs. In
postulations the fundamental �elds A(e)(x) and A(g)(x)
do not in�uence each other. The symmetry properties
of the action integral can be also studied with Eq. (34),
with simultaneous exchange of both elementary charges
qi, gi in L

Int(x) and masses mi in L
T (x) of all the par-

ticles pairs.

Variation Formulation for the Particle Fields

The particle �elds appear only in the kinetic part
LT (x) and in the interacting part LInt(x) of the Lorentz
scalar Lagrange density. We set up the kinetic part as

LT (j
(n)α
i x) =

∑
i=1,4

mi · c · ∂αj(n)αi (x). (37)

It is a Lorentz scalar and we have multiplied by factors
mi · c in order to put LT (x) in the Lagrange density in
Eq. (32). Furthermore, we construct the particle �elds
with the elementary charges and the particle current den-

sities j
(n)α
i (x) according to the Eqs. (28), (29) with suit-

able Minkowski space objects, with the four component
spinors Ψi(x). To describe relativistic moving particles,
we use the covariant Ψi(x) and the four component ad-

joint spinors Ψi(x) = Ψ∗i (x)γ0 as Dirac spinors of the
Dirac algebra with the (4x4)-matrices γα for the con-

struction of the particle current densities j
(n)α
i , [19], [30]
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j
(n)α
i (x) = c · Ψi(x)γαΨi(x). (38)

Note: our motivation to use the spinors for the descrip-
tion of particle i is neither to linearize the expression
E2 = m2

i · c4 + p2 · c2
nor to describe spin ½ particles. Crucially when choos-

ing spinors Ψi(x) for each particle kind i they should have
the same dimensions as Minkowski space (namely 4) and

are so constructed that the current densities j
(n)α
i , Eq.

(38), ful�ll the continuity equations of particle numbers
in the Minkowski space

∂αj
(n)α
i (x) = 0, i = 1, 4.

The factor c is in Eq. (38) explicitly included because

the de�nition of j
(n)α
i (x) with the spinors

j
(n)α
i (x) = (c · ρ(n)i (x), j

(n)
i (x)) = c · Ψi(x)γαΨi(x)

and we want to describe with Ψi(x)γ0Ψi(x) the par-
ticles number density ρ(n)(x). The 0 component of the
particle current density can be normalized

j
(n)0
i (x)/c = Ψi(x)γ0Ψi(x) =

∑
k=0,3 Ψ

∗
i,k(x) ·Ψi,k(x) >

0, i = 1,4,
in order to use at some time t = t0

ˆ
V

d3rj
(n)0
i (r)/c =

ˆ
V

d3rΨi(r)γ0Ψi(r) =

ˆ
V

d3r
∑
k=0,3

Ψ∗i,k(r)Ψi,k(r) = ni, (39)

for ni ≥ 1 particles i residing in V . The spinors represent
the particles i by four complex functions Ψi,k(x), k = 0, 3
which can be used to describe probabilities of point like
particles at location x of the Minkowski space, under the
condition that NETHER the location NOR the velocity
of the particles are exactly known. It is worth noting
that the same kinds of particles are repulsive to each
other, because their electric charges are the same. Such
particles do not remain very close to each other in the
Minkowski space.
For all four kinds of particles, we can construct the

Lagrange density L(x) expressed by the particle current
densities with spinors in a Lorentz scalar form which is in-
variant under Lorentz transformation. Now, we are able
to write down the kinetic part of the Lagrange density
LT (x) at each location x in expressed with spinors

LT (x) =
∑
i=1,4

mi · c · ∂αj(n)αi (x) =

∑
i=1,4

mi · c2
{
∂α(Ψi(x))γαΨi(x) + Ψi(x)γα∂α(Ψi(x))

}
.

(40)

Since the term L0(x) corresponds to the particle free
part of the �elds, at the variation for the particle �elds

this term can be omitted. For variation of the particle
�elds only the following expression can be considered

I =

ˆ
Ω

(dx)4{
∑
i=1,4

mi · c · ∂αj(n)αi (x)

−
∑
i=1,4

(qi ·A(e)
α (x)− gi ·A(g)

α (x)) · j(n)αi (x)}. (41)

Finally we obtain the action integral for the particle
�elds containing the parts LT (x) and LInt(x) which are
expressed with the spinors Ψi(x) and which depend on
x = (t, r) ε Ω

I =

ˆ
Ω

(dx)4{
∑
i=1,4

mi · c2 · ∂α(Ψi(x)γαΨi(x))

−
∑
i=1,4

(qi ·A(e)
α (x)− gi ·A(g)

α (x)) · c · Ψi(x)γαΨi(x)}.

(42)

In a good approximation the gravity part of the interac-
tion proportional to gi can be neglected for microscopic
systems, but we cannot neglect the conservation of the
gravitational charges

I =

ˆ
Ω

(dx)4{
∑
i=1,4

(mi · c2 · (∂α(Ψi(x))γαΨi(x)+

Ψi(x)γα∂α(Ψi(x))− qi · c ·A(e)
α (x)Ψi(x)γαΨi(x))}.

(43)

Furthermore, since only the dual-particle systems
(e,P), (p,E), (e,p) and (P,E) � i.e. the combinations
(i = 1, j = 3), (i = 2, j = 4), (i = 1, j = 2) and
(i = 3, j = 4) - can deliver bound states if at any time
t = t0, both particles i and j are present in a �nite small
volume V . Only these basic two-particle systems
- are electric neutral,
- have particles whose electric forces attracte each

other, and
- only for these systems stationary bound solutions of

the variation are expected.
Now we will only consider these cases. We express this

with the conditions

ˆ
V

d3rΨi(r)γ0Ψi(r) = 1;

ˆ
V

d3rΨj(r)γ0Ψj(r) = 1,(44)

at the same time t = t0 which are the subsidiary condi-
tions of the action integral within the Lagrange Formal-
ism. Furthermore, the action integral does not depend
on the volume V and on the surface of V , S, as long as
both conditions in Eqs. (44) hold. Finally we have to
consider the variation of the action integral in respect to
Ψi(x), Ψi(x), Ψj(x) and Ψj(x) for two particles i and j
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I =

ˆ
Ω

(dx)4{
∑
l=i,,j

(ml · c2 · (∂α(Ψl(x))γαΨl(x)+

Ψl(x)γα∂α(Ψl(x)))− ql · c ·A(e)
α (x)Ψl(x)γαΨl(x))}.

(45)

with the subsidiary conditions Eq. (44) and the free (in-
dependence) condition of the surface S of volume V , re-
spectively of the closed surface in Ω.

Lagrange Multipliers h and h0

In our representation of the action integral only LT (x)
contains the �rst derivatives of the covariant and ad-
joint spinors (with respect to the four coordinate of
the Minkowski space as required in variations of a La-
grangian). Furthermore, we have isopetric subsidiary
conditions, Eq. (44), and free boundary conditions of

the particle �elds Ψi(x), Ψi(x), Ψj(x) and Ψj(x). There-
fore, and in accordance to the Hamilton principle, at the
variation separately performed with Ψi(x), Ψi(x), Ψj(x)

and Ψj(x) the Euler equations for Eq. (45) shall contain
some constants, called the Lagrange multipliers (see [27],
page 90 �.) which make the variation stationary. Thus,
these constants will appear in equations of motion of the
particle �elds. We identify the Lagrange multipliers with
the Planck's constant h and with h0. The Euler equa-
tion of the particles with the constants h and with h0 are
ful�lled on Ω. The Lagrange multiplier h appears linear
and not quadratic as in the time dependent Schrödinger's
equation (see below). Further, we shall give a physical
interpretation of the appearance of the additional con-
stants in the particle motion equations.
The independence of physics from the boundary in the

course of Maxwell-charges is a powerful feature. For in-
stance, we are able to reduce the variation problem of the
particles i and j in the Minkowski space to a variation in
the 3-dimensional space in the case of stationary bound
solutions Ψi(x) of particle i if it is in the neighborhood of
particle j, Ψj(x), by an appropriate chosen constant for
the time behavior. This independence of the boundary
connects:
- the time variation and space variation for the bound

stationary solution on Ω with
- a constant λ and i with i2 = −1 in the exponential

function

Ψi(r, t) = Ψi(r) · exp(−iEt/λ);

Ψj(r, t) = Ψj(r) · exp(−iEt/λ), (46)

The particle �elds Ψi(x) and Ψj(x) with the phase

exp(+i(p · r− Et)/λ) (47)

ful�lls the free boundary conditions for Eq. (45) with
p = p(E) and it is also temporal stationary.

As already mentioned, the same particle kinds re-
pulse to each other, because their electric charges are
the same. They do not tolerate the proximity of oth-
ers in Minkowski space. It should be noted, the bound
stationary systems (e,P), (p,E) have outside of V , re-
spectably outside Ω, the magnetic �elds corresponding to
the magnetic dipole moments of the bound particle sys-
tems. These two-particle systems also have gravitational
force outside of V where both �elds are competitive.

A Comparison with the Traditional Quantum
Mechanics

At this point, we compare traditional quantum me-
chanics and the correspondence principle to our theory.
In traditional quantum mechanics this is succinctly de-
scribed with the �switch-over�, with a heuristic instruc-
tion, [31],[32], [33],[34]

E → +i~∂/∂t (48)

p→ −i~∂/∂r (49)

O�cially, the Schrödinger equation in the space represen-
tation arises within the correspondence principle (Niels
Bohr) from the Hamiltonian (an expression for the en-
ergy) of the considered problem where r =| r | is the
relative electron-proton distance

E = p2/2 ·m
′

eP + V (r) (50)

with subsequent application of the �switch-over�, Eq.
(48), (49), (50), on the wave function ψ = ψ(r, t) of an
electron in the electric �eld of proton V (r) to produce
the time dependent Schrödinger equation

i~
∂

∂t
ψ(r, t) = − ~2

2m
′
eP

4ψ(r, t) + V (r)Ψ(r, t) (51)

The wave function ψ(r, t) is a scalar function in the 3-
dimensional Euclidean space and depends on r and on
the time t. With Eq. (46) and λ = ~ = h/2π we get the
time independent Schrödinger equation

Eψ(r) = − ~2

2m
′
eP

4ψ(r) + V (r)Ψ(r). (52)

Moreover, the subsidiary condition´
d3r | ψ(r, t) |2=

´
d3r | ψ(r) |2= 1,

is used and the integration runs over the 3-dimensional
space. The interpretation is: since the precise location of
the electron is not known, the probability to �nd it any-
where is 1. But, what is about the velocity of the electron
in the ground state of the hydrogen atom? Fortunately,
Sommerfeld discovered the relation Eq. (19) with
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h = e2/2c · 1/α;α =
√

2 · Ebound/m
′
eP c

2, (53)

between the natural constants e, c, me, mP and the
ground state energy Ebound. The interpretation of α is
the relative velocity of the electron in the hydrogen atom
ground state divided by c. It is essential in quantum
mechanics. However, nobody knows why the dimension-
less Sommerfeld's �ne structure constant has the value
α = 1/137.036. Furthermore, theoretical scientists can-
not explain why the �switch-over�, Eqs. (48) �(52), with
the given value of h, Eq. (53), produces the developed
quantum theory for the electron in a hydrogen atom.
Furthermore, as we have seen, h is not a universal con-

stant describing all the microscopic processes. Beside h
there is a second constant

h0 = e2/2c · 1/
√

8; = h/387.7, (54)

in the electron-proton system.
Contrary to conventional quantum mechanics in our

theory the h does not quantize the energy. The h appears
at the variation principle for stationary bound solutions
of particle �elds with quantized charges and quantized
particle numbers, Eq. (39), as a Lagrange multiplier.
Please note that, we do not imagine the quantity E as
energy and p(E) in Eq. (47) as generalized impulse of
a particle in our Atomistic Theory. We are dealing with
the Lagrange formalism in the Minkowski space. The La-
grangian is independent of the natural boundary on each
surface of Ω. The boundary conditions are incorporated
in the space-time behavior of the spinors Ψi(x) and Ψj(x)
on the surface of Ω described with h, respectively h0, and
is independent of the surface of Ω. If we constructed the
particle current densities and the continuity equations (4)
and (7) with the spinors for stationary bound solutions,

the particle current densities j
(n)α
i (x) and j

(n)α
j (x) would

be time independent. That means there is no radiation
in the movement of charges and so Eqs. (44) give the
quantum conditions of the particle numbers in interior of
V . This quantum condition of the sources has nothing
to do with the quantization of energy. At this point, we
�nish the comparison of traditional quantum mechanics
and correspondence principle and continue our investiga-
tion with the conditions of variation of the Lagrangian
in the Minkowski space for the particles.

Relativity, Frame of Reference and Mutual
Interactions

Now, we turn to the last problem, to the problem of
relativity in this context. In inertial systems contempo-
raneous equal distances along the spatial scale are used
as coordinate scale. This description of inertial system is
also used as frame of reference by Einstein [3]. For the

more generalized description of nature that we use, in the
Minkowski space, inertial systems make no sense as frame
of references. Moreover, we cannot realize inertial coordi-
nate systems with physical objects: Point-like stable ele-
mentary particles would be the best microscopic objects
to mark the equal distance scale in space, but according
to our uncertainty principle (in the sixth basic hypothe-
sis), we cannot physically construct inertial systems with
these particles, because their locations AND velocities
are not precisely known. The invariant relative distance
in our formalism is de�ned by Eq. (1). The frame of
reference is the isotropic cosmic microwave background
(CMBR) which is universally present. If an object moves
in some direction, then the observed maximum of CMBR
is blue shifted in the direction of the motion. In the op-
posite direction it is red shifted. In conclusion, we can
de�ne the velocity of particles in respect to the CMBR.
This is as a frame of reference, which is a frame in respect
to the velocity of light c.

In traditional physics, the principle of relativity re-
quires that �the equations describing the laws of physics
have the same form in all admissible frames of reference.�
As an example, does �... in the framework of special rel-
ativity, the Maxwell equation have the same form in all
inertial frames of reference�. From our �ndings we ques-
tion the expression �in all admissible frames of reference�
- it is of much more important to introduce the principle
of relativity correctly with the use of Lorentz transfor-
mations, also with respect to c. Then the construction of
inertial systems with equal space distances at the same
time t = t0 which are �admissible frames of reference� is
impossible. Another aspect of relativity lies in trying to
de�ne relative distances between particles for the mutual
interactions. They are important if external �elds are
also considered. They appear in the Zeeman E�ect and
Stark E�ect in shifting and splitting the spectral lines
and in the Möÿbauer spectroscopy in external gravita-
tional �eld. However, investigations of these e�ects lie
beyond the scope of this article.

The mutual interactions of particles depend on rela-
tive distances, Eq. (1), on the velocities of the particles
relative to each other and on the relative orientation of
the spinors (that means the relative directions of veloci-
ties). Please recall, the interaction propagates with c and
that moving charged particles create magnetic �elds, so
that the motion of the other particle is also a�ected via
Lorentz force, depending on its velocity. We can de�ne
the motion of center of mass (COM) with the sum of the
elementary masses minus the Ebound/c

2. The relative
motion of particles is de�ned by the reduced masses in a
frame of reference connected to the COM. But the mo-
tion in and relative to the COM is not a Lorentz invariant
motion. With Eq. (46) the time dependency would be
ruled out and we need only to consider a space action in-
tegral for variation with the conditions Eq. (44). For the
relativity of particles in the mutual interaction �elds we
assume that the COM is at rest. If the COM is in rest,
then the condition of stationary bound states for the two-
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particle systems with net electric charge zero means, NO
electromagnetic radiation leaves AND the particle cur-
rent densities vanish on the surface of Ω. This means,
we are looking in the relative coordinate system between
particle i and j for such constants λ for which the action
integral vanishes

I =

ˆ
Ω

(dx)4{
∑
l=i,j

((−iλ) ·ml · c2 · (∂α(Ψl(x))γαΨl(x)+

Ψl(x)γα∂α(Ψl(x)))− ql · c ·A(e)
α (x)Ψl(x)γαΨl(x))} |COM

(55)

whereby λ multiplied with the imaginary unit i. Ob-
viously, if we choose

λ = ~, (56)

we get similar equations to the �switch-over� of the
traditional quantum mechanics in Eqs. (50) - (52), but
with a completely di�erent Lagrange density resulted in
the equation of motion in Eqs. (51) and (52) for the
description of atomic shells.
If we choose

λ = ~0 = ~/387.7, (57)

we get the description of neutrinos, the neutron and the
nuclei in a much narrower region of space and time, [11].
From Eq. (55) and with use of ~ and ~0 respectively we
introduce additional constants that give rise to stationary
bound solutions in the variation principle for the relative
motion of particles. This results in steady stationary
bound states of the particle motions if the COM is in
rest.
If the velocity of COM is much less than c, the La-

grangian splits o� in the movement of the COM with the
sum of the masses of constituents and in the movement
with the reduced mass. For two-particle systems with
zero net electric charge this means the COM moves with
the inertial mass mi, which is the sum of masses, minus
the bound energy divided by c2

mi = mi +mj − Ebound/c2,
and in a movement in the COM with the reduced mass

of particles i and j
mij ' = mi ·mj/(mi +mj),
at relative distances rij de�ned in Eq. (1). The bound

energy Ebound is radiated from the particle system at the
binding. The movement in the COM has to be described
with relative particle current densities jij(rij) and the
derivatives are constructed in respect to the relative co-
ordinates rij . Also the positions of the spinors relative to
each other and to the relative particle current densities
give contributions. The relative particle current density
jij(rij) is a conditional probability. In the interaction
term develops the mutual vector potential and the whole
interaction expression, derived from Eq. (55), would be

time independent in the case of temporal stationary so-
lutions.
The action integral Eq. (34) is very general and does

not depend of the surface of Ω. In the combination with
L0(x), Eqs. (37) and (39), it describes the plasma state
and all possible states of matter described by the La-
grange multiples h and h0. However, the conservation of
particle numbers has to be ful�lled.

Excitation and Radiation

The real occurrences of the transition from an unbound
state of two particles to a stationary bound state are a
non-conservative process: Over time, particles lose their
energies - they radiate energy in the form of an electro-
magnetic (and of course gravitational) waves. The total
radiated energy is equal to Ebound. The time evaluation,
given by time dependent Schrödinger equation Eq. (51)
is not able to describe this transition process with radi-
ation. Also, the generalized description with a Hamilton
operator for microscopic systems is not able to character-
ize the non-conservative transition process of radiation.
The commonly understood image, of electrons jumping
from one excited state to a less exited state and emitting
discrete energy packages quantized with Ekl = hνkl, as
Quantum Theory would suggest, is incapable of describ-
ing this transition processes.
A bound electron carries the electric charge e and it

moves in the electromagnetic �eld of the proton. Moving
electric charges always radiates energy. So how do we
explain the fact that the bound electron in a hydrogen
atom does not radiate? The explanation is, if the elec-
tron is correctly described in the Minkowski space with
an appropriate chosen spinor, the bound electron only in
the ground state does not radiate. The excited state is
the superposition of the ground state and the other sta-
tionary bound solutions of the variation principle. Thus
the charge density of the excited state is time dependent.
Time dependent charge densities of the excited states
cause the radiation of electromagnetic waves with dis-
crete frequencies υkl. However, the system does not emit
quantized photons, the energy of the excited states lose
smoothly the energy. The transition should rather be de-
scribed with a superposition of stationary bound states
ηi,,j(k; r, t), with di�erent values of Ek and an oscillating
charge density of the excited state, resulting in

ρ
(e)
i,j (r, t) = qi

∑
k,l

a∗kalη
∗
i,j(k; r, t) · ηi,j(l; r, t) =

qi
∑
k,l

a∗kalη
∗
i,j(k; r)ηi,j(l; r) · exp(−i(El − Ek)t/~).

(58)

The electric charge density ρ
(e)
i,j (r, t) oscillates in V

with the frequencies
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charge density oscillates exponential decay

decay

H atom in ground state

H atom radiates

EM excitation r

r

t = 0

t = t  1

r

t < 0

A  (r) = EM amplitude
charge densitye   (r) =

0 rBohr

t>

Figure 2. The �gure schematically shows the hydrogen atom excitation process before (t < 0) during (t = 0) and after (t >
0).The excitation, where ρ(r) is the electron location probability in relative distance to the proton. A(r) is the amplitude of
the classical electromagnetic �eld. After the excitation, the charge density eρ(r, t) of the excited H atom oscillates and emits
waves with discrete frequencies on the rear �ank (in a �nite space-time region) of the excitation wave package. In this region,
marked with ↑, the exponential behavior of the emitted wave appears: The limited radius of V for a variation principle of the
particles should be selected in this region.

νkl = (Ek − El)/h;Ek > El, (59)

which radiates electromagnetic waves with these fre-
quencies, see Figure 2. The energy of the excited
state declines smoothly during the radiation until the
ground state energy is reached: Again, we do not need
jumps/sudden excitation of electrons between energies
Ek of the excited system as the traditional quantum me-
chanics assume.
The excited atom is a damped resonating system with

the decay time tdecay � 1/υkl. However, the Eq. (58)
does not contain the damping factor.
On the wave-particle dualism: The electromagnetic ra-

diation has unambiguous wave character and the parti-
cles are particles. But because of ~ the probabilities of
particle densities of excited states behave in a similar
manner to how they would if they were waves, as in Eq.
(58) is shown. I do not follow Einstein's description of

quantized photon, [2]. The Hamilton's Eikonal theory
prohibits corpuscular light quanta. The emission of light
by atoms is a wave phenomenon and not a corpuscu-
lar one. Double slit experiments have to be discussed
within this context. Schrödinger, [31], disregarded the
natural boundary condition on the surface S of the en-
closed volume V and he set up integrals de�ned in the
whole 3-dimensional space. A second di�erence is the
quadratic appearance of ~ in Eq. (52) as a consequence
of �switch-over� Eq. (48)-(52). In our Eq. (55) the λ = ~
is linear. Later on, relativistic corrections on the �non-
relativistic� theory of H-atom were proposed, particularly
in the frame of Quantum Electrodynamics (QED). And
yet, one ought to question the QED since nobody re-
marked or criticized that the corresponding wave lengths
λik to νik are essentially larger than the size of the excited
states themselves!

Also the role of Planck's constant remains inexact in
the transition of the traditional non-relativistic to the rel-
ativistic theory. It is unsurprising that Schrödinger did
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not �nd a relativistic description of a hydrogen atom.
The reason is that ~ in the QED has a completely di�er-
ent meaning than in the relativistic �eld theory for mass
particles, e.g. in the Dirac equation. In Feynman graphs
the �ne structure constant α is used as a coupling con-
stant. The Feynman graphs deconstruct the relativistic
phenomenon and the in�nite sum of graphs lead to in�-
nite terms which have to be renormalized. For instance,
expressions for charges (and masses) are in�nite terms
and �nite physical values of charges are only a conse-
quence of renormalization. We consider ~ and ~0 in our
relativistic Atomistic Theory of Matter as Lagrange mul-
tipliers, based on the particle numbers conservation and
the elementary charges qi and gi are the coupling con-
stants between the �elds and the particle densities.

Physical Interpretation of
the Lagrange Multipliers h and h0

In the electron-proton system both Lagrange multipli-
ers h and h0 appear together. h describes the atomic
shells and explains the steady ground states and excited
states. The lowest stable energy state of the hydrogen
atom is at ∼ 13.6eV . Meanwhile, the description of the
stable neutron by h0 leads to an even lower stable bound
energy of the (e,P)-system at 2.04MeV [13]. We identi-
�ed this lowest energy ground state as the stable neutron
N0 and discussed this at an earlier point. However, the
energy gap between these two ground states determined
by h and h0 is very large and the spatial distribution
is so di�erent that a spontaneous transition occurs very
rarely. The transition from hydrogen ground state to sta-
ble neutron is neither described in literature nor directly
observed. Still, we propose that an outer perturbation
can reinforce the transition. Indirectly, phenomena such
as the burning of a 2 : 1 hydrogen oxygen mix (Oxy-
hydrogen) [35] might give important indications for this
transition.
Another interesting two-particle system to investigate

is the bound (e,p) system, known as positronium. The
energy of the positronium ground state is nearly at 6.8eV ,
half that of the hydrogen ground state energy. This is
because the reduced mass is m' = me/2. Consequently
the energy Ebound = e4me/16h2. Since di�erent decays
of the initial para-positronium and ortho-positonium can
be experimentally observed [28] this is a good occasion
to examine the above mentioned non-conservative tran-
sition process from positronium to electron-neutrino νe.
The preferred decay of a positronium is into an electron-
neutrino and two radiations with an approximate energy
of 0.511MeV . It should be remembered that the electron
and positron pair do not annihilate each other after the
radiation; instead they form the electron-neutrino. In
traditional relativistic quantum �eld theories the inter-
actions are presented with annihilation and the creation
of �eld particles. The Atomistic Theory does not agree
with this formalism.

The relations between h, h0, the sizes of objects in
the ground states Eqs. (21) and the natural constants e,
c, the reduced masses m′ as well as the bound energies
Ebound all are, to some extent, approximations, but they
are very useful and plausible relations. In a forthcoming
article the author will treat the variation problem of the
relative motion of particles in the case of stationary solu-
tions in detail and explain these relations, i.e. determine
the conditions for the calculation of the bound energies
with Eq. (55). The form of the Atomistic Theory of Mat-
ter presented here sets physics at ease: electromagnetic
and gravitational interactions are well accepted for all
physical processes in Nature. However, these interactions
are non-conservative and precise inertial conditions, the
dominant characteristics of classical physics, are missed.
Furthermore, the central principle of physics, that of the
energy conservation, has to be replaced with conserva-
tion of Maxwell-charges and, consequentially, with the
conservation of particle numbers.

CONCLUSION

A relativistic description of particles and �elds in a �-
nite range of the Minkowski space was developed in the
framework of an Atomistic Theory of Matter. The theory
model was achieved with a new assumption: Gravity is
caused by elementary gravitational charges gi = ±g ·mi;
a second kind of charge alongside the elementary elec-
tric charges qi = ±e of the stable elementary particles.
Charge conservation is an equivalent statement to the
conservation of particle numbers ni. The inertial mass
and the gravitational mass of composite particle systems
are di�erent even in the rest frame of reference. Accord-
ingly, Newton's classical law of motion in gravity has
to be modi�ed. Due to the isopetric subsidiary con-
dition the equations for the motion of particle systems
contain some additional constants, producing the radi-
ation of electromagnetic rays with discrete frequencies.
We have compared this new theory to traditional Quan-
tum Mechanics based on the Schrödinger theory. In this
comparison the Planck's constant h (Max Planck, 1900)
plays an entirely di�erent role. The constant h is nei-
ther a quantum of action nor of energy; h appears as
a Lagrange multiplier in the Minkowski space for par-
ticle systems corresponding to the isopetric subsidiary
conditions. The Bohr-Heisenberg Corresponding Princi-
ple has covered the inconsistency of the Quantum The-
ory. The new theory does not use energy expressions for
the descriptions of time development. Nor does it agree
with the quantization of the interacting �eld in which vir-
tual particles cause the interactions. Generally, quanta
are not needed in physics beside the four stable elemen-
tary particles. The theory uses a second constant, h0

to describe the nuclei, neutrinos and unstable particles.
The Atomistic Theory of Matter is an axiomatic, self-
consistent theory and is able to explain the discrepancies
of the two pillars of modern physics, since both those
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theories are based on invalid fundamental assumptions.
The Atomistic Theory can replace the Energetic Theory
to deliver a comprehensive physical description of Nature.
It then follows that Nature is not based on energy con-
servation, but rather on charge conservation and, from
that, the conservation of particle numbers. The physical

laws of Nature are non-deterministic, however causal.
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