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Abstract 

The Atomistic Theory of Matter is based on four kinds of point-like stable 

particles: electrons (e), positrons (p), protons (P) and eltons (E). These carry two 

kinds of conserved elementary charges, qi  = {±e} and gi  = {±g∙me, ±g∙mP}. This 

paper discusses approaches which lead to the static and dynamic forms of 

interaction. The interactions are caused by elementary electric charges, qi, and 

by the elementary gravitational charges, gi and the interactions propagate with a 

constant speed, c. The propagation speed is independent of the state of the 

motion of the particles. A comparison is performed between Newton’s second 

law, F = m
i
∙a (applied to the static gravitation force and the Coulomb force) and 

the derivation of Maxwell equation, within the atomistic theory of matter. 

During static force laws describe conservative interactions, Maxwell equation 

deals with non-conservative interacting fields. Also a comparison to Schrödinger 

theory of energy quantization of particles is included. The dynamics of particles 

with interactions is derived with occurrence of Lagrange multipliers, λk. 

 

Introduction 

The main tasks of physics [1] are to determine what matter is and from which 

constituents matter is composed to ascertain the interactions between those 

constituents and to deduce the time development of physical systems. The basic 

principles of established physics are Newton’s four laws of classical physics, the 

hypothesis of the universality of free fall (UFF) and energy conservation. The 

quantization of energy is connected to energy conservation. The modern theory 

of gravitation follows from UFF according to the general theory of relativity. 

The energy-mass-equivalence principle connects energy with mass within the 

special theory of relativity. Nevertheless, from this cluster of basic principles 

still doesn’t fully address the main tasks of physics, nor is a concept of mass 

determined which would for instance determine the observed composite 

particles and their masses.  

Therefore, in these paper I do not rely on the basic principles of the established 

physics, especially not the UFF and energy conservation. Ruther, I have 
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introduced a new physical axiom system which defines the constituents of 

matter and their interactions: 

Four kinds of point-like stable, elementary particles exist: e, p, P and E. 

- The elementary particles carry two kind of conversed elementary charges, qi  = 

 {- e, + e, + e, - e} and gi  = {- g∙me, + g∙me, + g∙mP, - g∙mP}, i = e, p, P, E.  

- The elementary charges cause the interactions between particles. They cause 

the interaction fields. The masses mP, me are the elementary masses of proton 
and electron. 

 - The interactions propagate with c and the constant propagation is 
independent of the state of the motion of particles. 

Because of the physical measurements, it should be taken into account that 

- measurements with infinite precision cannot be assumed,  

- each measurement is performed in finite regions of space and time. 

The axiom system is the principle of atomistic theory of matter, based on stable 

elementary particles which carry two kinds of conserved charges. The axioms 

incorporate basic assumptions about the constituents of matter and their 

interactions. The elementary particles are the electrons (e), positrons (p), protons 

(P) and eltons (E). In conventional physics the eltons are called “anti-protons”. 

The two kinds of interactions, caused by the elementary charges, are the two 

known fundamental interactions in physics: electromagnetism and gravitation.  

In the following I shall derive within the atomistic theory the static (conservative 

interaction) and the dynamic forms of interaction (which are principally non-

conservative) and compare these with the basic principles of established physics. 

 

The Static Form of the Fundamental Interactions 

At first I should state the static form of interactions which are principally 

conservative. It must only be defined or understood in terms of macroscopic 

bodies with Newton’s and Coulomb’s static force laws together with Newton’s 

second, as a result, that the relative positions, r = |ri –rj| and the relative 

velocities, v = |vi – vj|, of bodies can be precisely defined. For particles in the 

microscopic range these quantities cannot be observed. Further considerations 

are that all relative velocities between two macroscopic bodies are small 
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compared with c, which means that v/c << 1, and the propagation velocity of the 

interactions, c, is neglected. A further approach is also applied, that the motions 

of the elementary particles within the bodies are neglected. In these approaches, 

the static forces between two macroscopic bodies are given by the static electric 

force (Coulomb’s law) 

F
(em)

(body1, body2) = + Q(body1)∙Q(body2)∙(r2 –r1)/4∙π∙|(r2 –r1)|
3
,  (1) 

and by Newton’s principle for the static gravitational force  

F
(g)

(body1, body2) =  - G(body1)∙G(body2)∙(r2 –r1)/4∙π∙|(r2 –r1)|
3
.  (2) 

Newton’s famous equation for gravity was originally somewhat simpler 

F
(g)

(body1, body2) =  - G∙m
g
(body1)∙m

g
(body2)∙(r2 –r1)/|(r2 –r1)|

3
,    

with the universal gravitational constant G = g
2
/4∙π and with the gravitational 

masses, m
g
(bodyj), in Euler’s notation. Newton’s gravity law used hidden 

gravitational charges with the same signs. Both static forces depend of the 

relative distance of the bodies, r = (r2 –r1). 

The electric charges Q(body1), Q(body2) of the bodies are composed of the 

elementary charges, qi, and the gravitational charges, G(body1), G(body2), are 

composed by the elementary gravitational charges, gi, respectively. Since the 

elementary particles carry two kinds of charges, the static forces, F
(em)

(body1, 

body2) and F
(g)

(body1, body2), always appear together. However, the electric 

force is greater than the gravitational force by a factor of ca. 10
+42

. Furthermore, 

the extensions of the macroscopic bodies are considered as to be small compared 

to the relative distance, r = |r1–r2|. Figuratively speaking, one considers the 

principle that all elementary particles of two bodies are sitting on the positions r1 

and r2 with the total charges, 

Q(bodyj) = Σ qj, G(bodyj) = Σ gj,        (3) 

The summation concerns the elementary particles within the bodyj. In the above 

mentioned approaches Newton’s second law  

F = m
i
∙a = m

i
∙d

2
r/dt

2
,         (4) 

“force = inertial mass ∙ acceleration”, is to be understood with the static electric 

and the static gravitational forces and with a(body1)  = d
2
r1/dt

2 
- d

2
r2/dt

2
 

m
i
(body1)∙a(body1) = F

(em)
(body1, body2) + F

(g)
(body1, body2).   (5) 
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In Newton’s second law the inertial mass, m
i
(body1), is considered, especially as 

the inertial rest mass.  

 

Motion in a Static Gravitational Field 

Because of the very large difference between the strengths of the electric and 

gravitational forces, our calculation for motion in gravity only make sense if the 

Coulomb force does not apply 

F
(em)

(body1, body2) = 0.          (6) 

A necessary condition is that the body1 is electric neutrally, Q(body1) = 0. 

Furthermore, it is assumed that no outer fields are present. Then the equation of 

motion of body1 in the gravitational field of a second body is 

m
i
(body1)∙a(body1) = F

(g)
(body1, body2)        

  = - G(body1)∙G(body2)∙(r2 –r1)/4∙π∙|(r2 –r1)|
3
.    (7) 

We shall frequently consider bodies which are composed of electric neutrally 

atoms or isotopes, which are known as stable entities. In this case, the 

gravitational charge of a body is the sum of the gravitational charges of electric 

neutrally isotopes 

G(body) = Σ h(A,Z)∙g(A,Z isotope),       (8) 

whereby h(A,Z) is the frequency of occurrence for an isotope with mass number 

A and with nuclear charge Z. If the isotopes do not contain elton particles, the 

gravitational charges of the isotopes composed by the elementary gravitational 

charges, gi  = {±g∙me, ±g∙mP}, do not depend on Z, but only on A 

g(A,Z isotope) = g(A isotope) = + g∙A∙(mp – me).     (9) 

The number of positrons, Np, does not appear in this expression because an equal 

number of electrons neutralize the gravitational charges of the positrons. In this 

case the gravitational charge of a macroscopic body is simple 

G(body) = Σ h(A,Z)∙g(A,Z isotope) = + g∙N∙(mp – me),    (10) 

where N is the number of protons within the body; mp and me are the elementary 

masses of protons and of electrons. In the case that two bodies are composed of 



 

- 5 - 
 

electric neutrally isotopes, which do not contain eltons, the equation of motion 

of a macroscopic body1 expressed with gravitational charges is 

 m
i
(body1) ∙a(body1) =  - G(body1)∙G(body2)∙(r2 –r1)/4∙π∙|(r2 –r1)|

3 

= - (g∙N1∙(mp –me))∙(g∙N2∙(mp –me))∙(r2 –r1)/4∙π∙|(r2 –r1)|
3 

= - G∙m
g
1∙m

g
2∙(r2 –r1)/|(r2 –r1)|

3
.      (11) 

This is to be compared to Newton’s G = g
2
/4∙π, The gravitational masses are 

m
g
(body1) = m

g
1 = N1∙(mp –me) and m

g
(body2) = m

g
2 = N2∙(mp –me). Newton’s 

equation of motion contains the inertial mass m
i
(body1) and the gravitational 

mass, m
g
(body1) = m

g
1, of body1. Within the atomistic theory, we see that the 

gravitational masses, m
g
(body), are constant if the numbers of electrons, 

positrons and protons remain constant within the macroscopic bodies. 

Also, we know phenomenological the inertial masses of the isotopes, m
i
(A,Z 

isotope), from mass-spectrometry, [2], and we can therefore phenomenological 

calculate the inertial mass of each body according to 

m
i
(body) = Σ h(A,Z)∙m

i
(A,Z isotope).       (12) 

The acceleration of body1 in the gravitation field of another body is 

a(body1) = - G∙m2
g
∙(r2 –r1)/|(r2 –r1)|

3
∙m

g
(body1)/m

i
(body1) 

= - a0 ∙ m
g
(body1)/m

i
(body1) = - a0 ∙ (1 + ∆(body1).    (13) 

The expression 

a0  = G∙m2
g
∙(r2 –r1)/|(r2 –r1)|

3
 = g

2
∙m2

g
∙(r2 –r1)/4∙π∙|(r2 –r1)|

3
,   (14) 

does not depend on body1. Only the relative mass defect  

∆(body1) = (m
g
(body1) – m

i
(body1))/m

i
(body1) = m

g
(body1/m

i
(body1) - 1, (15) 

depends of property of body1. The relative mass defect, ∆(body), can be 

phenomenological calculated for each body if we know the isotope composition 

of the body, because the atomistic theory gives us the gravitational mass, 

m
g
(body). The UFF is not valid then the calculation gives [3] 

- 0.109% (hydrogen atom) < ∆(body) < + 0.784% (
56

Fe isotope).  (16) 

In conclusion are the inertial and the gravitational masses of each body different. 

In established energetic physics the m
g
(body) is unknown and it is falsely set  
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m(body)  = m
i
(body) = m

g
(body).       (17) 

For the sake of completeness, using the atomistic theory of matter, we can also 

gain the inertial rest masses of each body, which are composed of Ni elementary 

particles i = e, p, P and E  

m
i
(body) = (NP + NE)∙mP + (Np + Ne)∙me – E(binding)/c

2
  ≥  0.   (18) 

The energy E(binding) radiates from the body at the binding of the elementary 

particles. The expression of m
i
(body) with m

i
(A,Z isotope), Eq. (12), is only an 

approximation, then the binding energies of the isotopes in body are neglected 

which are ca. 10
-6

-times smaller than the average binding energies of particles 

within the isotopes. The general expression for the gravitational charge 

connected to the masses is 

G(body) = ± g∙|((NP - NE)∙mP + (Np - Ne)∙me)|.     (19) 

Gravity can be attractive, repulsive (or zero) depending on the signs of the 

product G(body1)∙G(body2).  

The approaches of the static interactions are discussed in so far at least for the 

gravity. Newton’s second law describes only dynamics in the statics case. The 

Newtonian Theory of Gravitation holds only if the signs of the gravitational 

charges are the same, however, the masses m
i
 and m

g
 are different. The matter 

on Earth is seemingly consisting of components with positive gravitational 

charges because the mass of proton is 1836 times greater than mass of electron 

and the gravitational charges of positrons are compensated by the same number 

of electrons. Further information about the static gravity and the atomistic theory 

of matter are in [3].  

Space is assumed to be Euclidean and time, t, is a separate parameter. The 

relative positions of two bodies, r(t) = r1(t) – r2(t), fulfill the relation for scalar 

product 

(r(t)∙r(t)) = (x1(t) - x2(t))
2
 + (y1(t) - y2(t))

2
 + (z1(t) - z2(t))

 2
 > 0. 

With the relative position vector, r(t), the relative velocity and relative 

acceleration are 

 v = dr(t)/dt = dr1/dt - dr2/dt , a = d
2
r(t)/dt

2
 = d

2
r1/dt

2 
- d

2
r2/dt

2
.   (20) 

The precise initial conditions (r(t0),p(t0)) are only valid for macroscopic bodies, 

and cannot be used in microscopic ranges.  
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Newton’s four laws (the inertia, the dynamics, the action-reaction principle and 

the independence of forces) lead to classical physics, and they can be discussed 

as approaches to the atomistic theory of matter. The first law, which defines 

inertial systems, is somewhat specially since it concerns bodies in interaction- 

free regions. In interaction-free regions the inertial mass, m
i
(body), plays no 

role. In other words, the first Newtonian law cannot invariably apply to the 

inertial mass of bodies moving in inertial systems. The inertial masses are 

invariably addressed by the dynamics, principally by Newton’s second law.  

 

The Core of Electrodynamics 

The dynamics of the electromagnetic field [4] was discovered by Maxwell in the 

19
th
 century. Maxwell did not have used the Newtonian four laws. 

The static electric force between a test electric charge qj and a body which is 

composed of n elementary charges, qi, is given by the Coulomb’s law 

Fj
(em)

(rj) = + 1/4∙π Σi
n
 qj∙qi∙(ri – rj)/|(ri – rj)|

3
.     (21) 

The static electric field E(rj) at the position rj is  

E
(em)

 (rj) = + 1/4∙π Σi
n
 qi∙(ri – rj)/|(ri – rj)|

3
.      (22) 

The flux of the vector field E
(em)

 from the n charges which are located 

somewhere inside the closed surface S (and act on a single charge, qj, outside S)  

Flux of E
(em)

 = + ∫
S
 E

(em)
∙dS.        (23) 

The superposition principle of electric charges gives 

∫
S
 E

(em)
∙dS  = Σi

n
 qi = Q(body).        (24) 

Since we don’t know the location of the charges inside the body (within a 

volume V), we can express the total charge with the charge density 

Q(body) = ∫
V
ρ

(em)
 dV          

and we have Gauss’s law in integrated form 

Q(body) = ∫
S
 E

(em)
∙dS  = ∫

V
 divE

(em)
 dV = ∫

V
ρ

(em)
 dV.    (25) 

The differential equation is known as  

div E
(em)

 = ρ
(em)

.                                Maxwell I      (26) 
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The magnetic flux through any closed surface, S, is zero 

 ∫
S
 B

(em)
∙dS  = 0,          (27) 

according to the divergence theorem 

divB
(em)

 = 0.                                      Maxwell II     (28) 

The energy gained by charge, qj, along path C is 

W
(em)

  =  ∫C F
(em)

∙dl = qj ∫C E
(em)

∙dl = qj ∫r1
r2

 E
(em)

∙dr     (29) 

Coulomb’s law reveals the conservative property of the electrostatic field  

∫C E
(em)

∙dl = ∫r1
r2

 E
(em)

(r) dr        (30) 

along any curve between two points r1 and r2. It is zero if r1 = r2. Stock’s 

Theorem gives 

rot E
(em)

 = 0.          (31) 

Because, for a scalar field ϕ yields 

rot(grad ϕ) = 0,          (32) 

so the conservative electrostatic field can be written in terms of a potential 

E
(em)

 = - grad ϕ
(em)

,          (33) 

and with the current density j, for the static magnetic field yields 

rot B
(em)

 = + j
(em)

/c.         (34) 

B
(em)

 is non-conservative unless there are no currents. 

The conservation of electric charges is expressed by 

div ρ
(em)

 + ∂j
(em)

/∂t = 0.         (35) 

If the fields are time dependent it follows then 

rot E
(em)

  = – 1/c∙∂B
(em)

/∂t.            Maxwell III         (36) 

Maxwell III gives the non-conservative part of the electric field if the field is 

time dependent. 

Apart from a term in order of o((v/c)
2
) the Lorentz force is 
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Fj
(em)

 = + qj∙(E
(em)

 + v/c x B
(em)

).       (37) 

The last equation holds for time-dependent magnetic field, B
(em)

 

 rot B
(em)

 = j
(em)

/c + 1/c∙∂E
(em)

/∂t.     Maxwell IV     (38) 

Instead of E
(em)

 and B
(em)

 we can work with a scalar potential ϕ
(em)

 and with a 

vector potential A
(em)

. Then the fields E
(em) 

and B
(em)

 can be written in terms of 

E
(em)

 = - grad ϕ
(em)

 - 1/c∙∂A
(em)

/∂t.       (39) 

B
(em)

 = rot A
(em)

,          (40) 

However, the new potentials, ϕ
(em)

 and A
(em)

, must fulfill gauge transformations. 

In the following we shall use the Lorenz gauge 

div A
(em) 

+ 1/c
2
∙∂ϕ

 (em)
/∂t = 0,        (41) 

because we want the wave equation to be valid for ϕ
 (em)

 and A
(em)

 separately. 

The Lorenz gauge means the electromagnetic field propagate with c. Up to now, 

the fields were functions of the position vector r and the independent variable t . 

One can write the electrodynamics in covariant formulation in Minkowski 

space, {x} ε Ω. Such a formulation was presented mainly by Lorentz, Poincaré 

and Minkowski at the beginning of the 20
th

 Century. We write the covariant 

four-vectors, x
ν
 = (c∙t,r), ∂

ν
 = ∂/∂xν = (1/c∙∂/∂t,-∂/∂r), the electromagnetic 

potential and  the current density in the Minkowski space as 

A
(em)ν

 (x) = (ϕ
 (em)

(r,t)/c, A
(em)

(r,t)), with ν = 0, 1, 2, 3 and   (42) 

j
(em)ν

(x) = (c∙ρ
(em)

(r,t), j
(em)

(r,t).        (43) 

With the electric charge conservation  

∂ν j
(em)ν

(x) = 0,  

and with the Lorenz gauge (double occurring indexes are sums over 0, 1, 2, 3) 

∂ν A
(em)ν

(x) = 0,          (44) 

we have the Maxwell equation in a compact, covariant form 

∂μ ∂
μ

 A
(em)ν

(x) =  + j
(em)ν

(x).        (45) 

It can be assumed [5] that one could also perform the same procedure also for 

the gravitational field, which is caused by the elementary gravitational charges, 
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gi. One need only replace the label 
(em)

 with 
(g)

 in the formalism and one take into 

account that instead of the Coulomb’s law the Newtonian law gives the 

connections between the charges and the force, Fj
(g)

(rj), with a minus sign,  

Fj
(g)

(rj) = - 1/4∙π Σi
n
 gj∙gi∙(ri – rj)/|(ri – rj)|

3
 = - gj∙E

(g)
(rj). = - gj∙∫

V
ρ

(g)
 dV. (46) 

The appearing minus sign in the force means that we must also replace j
(em)

 with 

- j
(g)

 in connection to the field. We write explicitly only the most important 

equations for gravity. For the equation of the static gravito-magnetic fields holds 

rot B
(g)

 = - j
(g)

/c.           (47) 

The continuity equation of gravitational charges is  

div ρ
(g)

 + ∂j
(g)

/∂t = 0,         (48) 

and Lorentz force for the gravitation is up to a term of the order of o((v/c)
2
) 

Fj
(g)

 = - gj∙(E
(g)

 + v/c x B
(g)

).         (49) 

In the invariant notation the Lorenz gauge remains the same for the gravitation 

∂ν A
(g)ν

(x) = 0.          (50) 

The corresponding covariant wave equation for the gravitational field will be 

 ∂μ ∂
μ

 A
(g)ν

(x) =  - j
(g)ν

(x).         (51)
 

In must be emphasized that j
(em)ν

(x)
 
and j

(g)ν
(x) are probability density covariant 

four vector-functions. In the following we shall derive the covariant equations of 

motion for the fields and particles within the Lagrange formalism (in finite 

ranges of Minkowski space {x} ε Ω). A crucial point is the formulation of the 

invariant, non-conservative interactions between the charge probability density 

functions and the fields. We attain an elegant formulation of covariant 

dynamics, but it can be seen that the energy is neither conserved, nor quantized. 

 

The Dynamic Form of Electromagnetic and Gravitational Interactions 

For the formulation of dynamics, Lagrange, Euler and Hamilton gave a 

generalized description. They created the Lagrange formalism.  The equations of 

motion can be derived and according to the Hamilton principle. This allowed 

using a more general form of interactions. Nevertheless, Lagrange, Euler and 

Hamilton did not have use the most general description for physics. They used, 
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for instance, that the positions and velocities (impulses) of bodies, (ri(t), pi(t)), 

can be determined at every time, t, precisely. At least, they assumed that the 

precise initial conditions, (ri(t0), pi(t0)), can be assumed at some time, t  =  t0. In 

the following, I shall give up this assumption. 

Because the interactions are assumed to propagate with the constant speed c, 

space and time are connected. I shall describe the dynamics in finite ranges of 

Minkowski space, Ω. In Minkowski space the distance between two points a1
ν
 = 

(c∙t1, r1) and a2
ν
 = (c∙t2, r2) is defined with an invariant expression 

∆(a1,a2) = a1ν a2
ν
 = c

2
∙(t1 - t2)

2
 – ((x1 -x2)

2
 +(y1 -y2)

2 
+(z1 -z2)

2
).   (52) 

This expression is not positive definite. Individual particles can only move on 

paths connecting points with ∆(a1,a2) > 0. The interactions propagate on a four 

dimensional surface with ∆(a1,a2) = 0. The distances ∆(a1,a2) < 0 correspond to 

different individual particles. Furthermore, ∂
ν
 = ∂/∂xν = (1/c∙∂/∂t,-∂/∂r). 

The following does not use the condition that the knowledge of precise 

positions, ri(t), and velocities (impulses, pi(t)) of particles/bodies are known. 

Furthermore, I formulate each expression in Lorentz covariant forms in order to 

be sure that they are valid in each coordinate system of Minkowski space Ω. 

Therefore, I write for each kinds of particle, i, instead of (ri(t),pi(t)), the Lorentz 

covariant probability current densities, ji
(n)ν

(x) = (c∙ρ
(n)

(r,t),j
(n)

(r,t)), ν = 0,1,2,3, 

{x}ε Ω. Any particles of the same kind are indistinguishable from each other. 

Therefore, the electric current density (expressed by elementary electric charges, 

qi,) is given by 

j
(em)ν

(x) = Σi=e,p,P,E qi∙ji
(n)ν

(x).        (53) 

For the current density of gravitational charges, gi, we use a similar expression 

 j
(g)ν

(x) = Σi=e,p,P,E gi∙ji
(n)ν

(x).        (54) 

Since the elementary charges cause the fields, the interaction between charges 

probability current densities and the field can be written in the following Lorentz 

invariant form for electromagnetism 

+ j
(em)

ν(x)/c A
(em)ν

(x) = + Σi=e,p,P,E qi∙ji
(n)

ν(x)∙A
(em)ν

(x),    (55) 

and for gravitation 

- j
(g)

ν(x)/c A
(g)ν

(x) = - Σi=e,p,P,E gi∙ji
(n)

ν(x)∙A
(g)ν

(x).     (56) 
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One sees that the fields must be four vector fields, A
(em)ν

(x) amd A
(g)ν

(x), in 

order to get a Lorentz invariant interaction term. Since the fields propagate with 

the constant speed, c, the four vector fields must fulfill the subsidiary conditions 

(the Lorenz conditions) 

∂νA
(em)ν

(x) = 0 and ∂νA
(g)ν

(x) = 0.       (57) 

The action integral is constructed with a Lorentz invariant Lagrange density, [6]  

 I =  ∫
Ω
 (dx)

4
 {Σi=e,p,P,E mi∙c∙∂νji

(n)ν
(x) – (F

(em)
μν(x)∙F

(em)μν
(x) + F

(g)
μν(x)∙F

(g)μν
(x))/4 

      - Σi=e,p,P,E qi∙ ji
(n)

ν(x)∙A
(em)ν

(x) + Σi=e,p,P,E gi∙ji
(n)

ν(x)∙A
(g)ν

(x)},  (58) 

with the help of the Faraday tensors 

F
(em)μν

(x) =  ∂
μ
A

(em)ν
(x) - ∂

ν
A

(em)μ
(x),        (59) 

F
(g)μν

(x)  =  ∂
μ
A

(g)ν
(x) - ∂

ν
A

(g)μ
(x).       (60) 

The action integral is a Lorentz scalar. It is a probability density functional and 

it is constructed in order to derive the dynamics of the fields and the particles in 

a most general form. But the action functional, I, is not an expression for energy.  

With the Hamilton principle, treating A
(em)ν

(x) and A
(g)ν

(x) as independent 

generalized variables and applying the Lorenz conditions as subsidiary 

conditions, the dynamics of the fields could be derived in the usual way within 

Ω. The covariant dynamics of the fields are given by the equations 

∂
μ
 ∂μ A

(em)ν
(x) = + j

(em)ν
(x) = + Σi=e,p,P,E qi∙ji

(n)ν
(x),     (61) 

∂
μ
 ∂μ A

(g)ν
(x) = - j

(g)ν
(x) = - Σi=e,p,P,E gi∙ji

(n)ν
(x).     (62) 

The first equation is the well known Maxwell equation. The second equation is a 

new wave equation for the motion of the covariant gravitational field, A
(g)ν

(x). 

Both equations are wave equation with the propagation speed c. 

 

The Dynamics of Particle Systems 

The particles also have subsidiary conditions which are given by the 

conservation of particle numbers, ∂νji
(n)ν

(x) = 0, i = e,p,P,E. within Ω. I call the 

subsidiary conditions of particles as isopretic subsidiary conditions because the 

numbers of particles are conserved in Ω and these are integral conditions. Such 

http://atomsz.com/covariant-theory/
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subsidiary conditions must be treated as Lagrange multipliers, λi, at the 

variation, [7] 

δ I + δ Σk λk/c∙( Σi ∫
Ω
 (dx)

4
 ∂νji

(n)ν
(x) ) = 0.      (63) 

The subsidiary conditions for particles are never used in the established physics. 

Furthermore, the probability current densities must be written in a bilinear form  

ji
(n)ν

(x) = (c∙ρi(r,t),ji(r,t)) = c∙ψi(x)γ
ν
ψi(x), ν = 0,1,2,3 and i = e,p,P,E,  (64) 

and must be inserted in I, in order to perform the variation. It is important to 

notice, that the four components Dirac spinors ψi(x), the adjoin spinors ψi(x) = 

ψi(x)
T*

∙γ
0
 and the γ

ν
 matrixes come into the theory because neither the positions, 

nor the velocities (impulses) of the particles are precisely known. Per 

construction the ψi(x)γ
ν
ψi(x) are covariant four-vectors and fulfill the continuity 

equations ∂ν(ψi(x)γ
ν
ψi(x)) = 0, i = e,p,P,E. At the variation then the spinors and 

adjoint spinors, ψi(x), ψi(x), i = e,p,P,E, must be treated as independent 

generalized variables. The derived equation of particle motion is 

(mi∙c
2
 - Σk λk∙∂νγ

ν
)

 
ψi(x) + qi∙A

(em)
ν(x)γ

ν
ψi(x) - gi∙A

(g)
ν(x)γ

ν
ψi(x) = 0,  

i=e,p,P,E.           (65) 

The variation of Eq. (58) is stationary in Ω, if all the spinors, ψi(x), fulfill these 

equations and if the fields fulfill the covariant wave equations Eqs. (61), (62). 

But, that the variation is stationary is another problem, because we are seeking 

the time stationary in order to render conserved energies for exceptional particle 

states in Ω. For time stationary of solutions one must consider the equations 

(mi∙c
2
 - i∙Σk λk’/2π∙∂’νγ

ν
)ψi’(x’) + qi∙A

(em)
’ν(x’)γ

ν
ψi’(x’) - gi∙A

(g)
’ν(x’)γ

ν
ψi’(x’) = 0,  

for i = e, p, P, E.          (66) 

The mutual fields of a composite particle systems, A
(em)

’
ν
(x’)and A

(g)
’

ν
(x’), must 

also be time stationary in the center of mass (COM) of the particles and ψi’(x’) 

are relative spinors. The coordinate, x’, is to be taken according to COM system. 

Regardless, the Lagrange multipliers, λk, λk’, only occur in the equations of 

particle motion because the particle numbers conservations. Such stationary 

states are independent of the boundary conditions of the surface of finite 

volumes V [10]. 
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A Comparison with the Schrödinger Formalism 

The Eq. (66) is the correct “relativistic generalization” of the Schrödinger 

formalism [8]. For the microscopically motion of particles, this formalism starts 

with the corresponding principle (an ad hoc transformation)  

E → +i∙h/2∙π∙∂/∂t,          (67) 

p → -i∙h/2∙π∙∂/∂r,          (68) 

and applied on the energy expression (with conservation of energy) 

E = p
2
/2∙m’ + V(r),  m’ is the reduced mass.     (69) 

Schrödinger has taken complex valued wave functions, ψ(r,t), resulting in 

+i∙h/2π∙∂ψ(r,t)/∂ t = - (h/2∙π)
2
/2∙m‘∙∆ψ(r,t) + V(r)∙ψ(r,t).   (70) 

For microscopic states the Heisenberg Uncertainty Relation (constructed with 

the help of h/2π) must be fulfilled. The timely stationary of a state is given if  

ψ(r,t) = exp(-i∙E∙t/h/2∙π)∙ψ(r,0),       (71) 

and if ψ(r,0) fulfills the eigenvalue equation within a variation principle getting 

E∙ψ(r,0) = - (h/2∙π)
2
/2∙m’∙∆ψ(r,0) + V(r)∙ψ(r,0)  for ∫| ψ(r,0)|

2
 dV = 1. (72) 

Quantum mechanics assumed that the initial states, ψ(r,t) for t = t0, can be 

always precisely known. An ad hoc constant h/2∙π was needed for the 

quantization of energy and h is the Planck constant. Schrödinger's concept did 

neither contain the magnetic field, nor the propagation of interactions with c and 

it tried to describe microscopic atomic states within energy conservation. 

In the atomistic theory of matter, neither the precise knowledge of the initial 

states, nor energy conservation is required. The additional constants are 

appearing in the theory of particle motions as Lagrange multipliers, λk’. 

Depending on surface conditions of Ω, the theory is also able to describe stable 

or unstable states of composed particle [1], [9] and [10] simultaneously with 

energies and lifetimes.  

In the atomistic theory of matter (ATOM), the timely stationary of states gives 

only energy conservation for exceptional states with some Lagrange multipliers 

in Ω. With time-dependent fields, A
(em)ν

(x) and A
(g)ν

(x), energy conservation 

cannot be understood as a general principle in physics. But, in the established 
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physics energy conservation is considered as the most important fundamental 

basics. Such a principle does not exist generally in Nature. The atomistic theory 

of matter is a relativistic quantum field theory, but neither energy quantization, 

nor the E = m*∙c
2
 principle are needed. In a following paper [11], the prognoses 

of ATOM will be discussed in comparison with observed composite particles, in 

particular with neutrinos and neutrino-like particles which have gravitational 

charges and gravitational masses zero.    

 

Conclusion 

The Atomistic Theory of Matter (ATOM), defined by a new physical axiom 

system, is a relativistic quantum field theory where only the charges of the 

elementary particles are quantized. The elementary charges are conserved. The 

Planck constant, h, introduced 1900 by Max Planck, plays indeed the role of a 

Lagrange multiplier and it occurs only in the equations of particle motion. In the 

ATOM (based on the four kinds of stable elementary particles) the 

electromagnetism and the gravitation are formulated in a unified manner with 

the same space-time metric and this theory describes a completely different kind 

of physics than the established energetic physics. Furthermore, the gravitation is 

also built into the particle physics as interaction. In contrast to the established 

gravitation theory derived from the general theory of relativity, gravitation does 

not incorporate singularity in space and time. The elementary particles cannot 

approach each other closer than 10
-17

 cm; a maximum matter density is given to 

be ca. 10
+24

 g/cm
3
, [6]. The special and the generally relativity theories are not 

used in ATOM. In the atomistic theory of matter only the relativity of motions 

between particles and relative to c are needed. The energy-mass-equivalence, E 

= m*∙c
2
, is not valid because the elementary masses of proton and electron, mP 

and me, are not equivalent to energy. Conservation of Energy and UFF, basic 

principles of the established physics, are indeed not present in Nature. The laws 

of Nature are non-deterministic, however causal. 
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