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Abstra
t

The 
urrently a

epted Standard Model of Parti
le Physi
s and the

Theory of General Relativity for Gravitation (GR) are still theoreti
al,

and are not 
onsequen
es of valid fundamental physi
al postulates. The

a

epted standard theories are based on the quantization pro
edure of en-

ergy and �elds (QT) and on two relativity theories, the theories of Spe
ial

Relativity (SR) and GR whi
h are, to this day, only s
ienti�
 
onventions.

All in all, these theories all use the 
on
ept of energy 
onservation: they

are energeti
 theories. A number of undeniable and irre
on
ilable dis
rep-

an
ies observed in nature are herein taken as an opportunity to elaborate

new fundamental prin
iples in physi
s. First, the basi
s postulates of the


urrently a

epted theories are assembled. These basi
 postulates are re-

viewed in terms of their 
onsisten
y and of their dependability for physi
al

theories. The results of this review pro
ess lead to new basi
 postulates

in physi
s. These are 
onsistent due to 
orre
t mathemati
al formula-

tions. A separate physi
al innovation brings the new basi
 postulates

in-line with the key experimental observations. The �rst key observation

is that the Universality of Free Fall has been observed to be in
onsistent,

and the se
ond is that all mi
ros
opi
 obje
ts are essential smaller than

the the wave lengths of their emitted ele
tromagneti
 radiations. Further,

planetary motion o�ers 
onditions for UFF violations, whi
h indu
ed the

establishment of a new appropriate basis of gravitation on new appropri-

ate basi
s. The se
ond key observation leads to the 
on
lusion that the

emission of ele
tromagneti
 radiation is purely a wave phenomenon and

not 
orpus
ular. The additional physi
al assumption is that both ele
tro-

magnetism and gravitation are 
aused by 
onserved elementary 
harges.

The number, the sizes and the signs of the newly introdu
ed elementary

gravitational 
harges are adjusted on the basi
s of experimental observa-

tions, with the 
onsequen
e that both kinds of elementary 
harges 
an

be assigned to the physi
al properties of four stable elementary parti
les.

Otherwise put, the new basi
 prin
iples of theories lead to a 
on
ept of

an atomisti
 physi
s instead of the energeti
 physi
s. The theory is also a

type of quantum physi
s, however only the sour
es of the intera
ting �eld

are quantized; not the �elds and not the energy.
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1 Review of the Basi
 Postulates in Physi
s

At �rst, we de
lare that all physi
al pro
esses have to be des
ribed in a spa
e-

time 
ontinuum with the properties that time and spa
e are homogeneous and

that spa
e is isotropi
. Generally, the s
ienti�
 term �homogeneous� means the

same event 
an o

ur at ea
h point, whereas �isotropi
� means the same a
tion


an o

ur in every dire
tion from a parti
ular point. In�nity is not in
luded in

physi
al des
riptions.

The postulates of the Spe
ial Relativity (SR) are:

1. First postulate (prin
iple of relativity)

The laws by whi
h the states of physi
al systems undergo 
hange are not

a�e
ted, whether these 
hanges of state be referred to the one or the other of

two systems of 
oordinates in uniform translatory motion. Or: The laws of

physi
s are the same in all inertial frames of referen
e.

2. Se
ond postulate (invarian
e of 
)

As measured in any inertial frame of referen
e, light is always propagated in

empty spa
e with a de�nite velo
ity 
 that is independent of the state of motion

of the emitting body. Or: The speed of light in free spa
e has the same value 


in all inertial frames of referen
e.

The �rst 
riti
ism is that both postulates make use of the 
on
ept �inertial

frame of referen
e�. However, su
h a frame of referen
e is not de�ned within the

basi
 postulates. Anyhow, it is often argued that everybody knows what iner-

tial frame of referen
e is: inertial frames refer to observers whi
h have uniform

translatory motions to ea
h other. This 
on
ept is based on 
lassi
al physi
s.

Namely, that at an exa
t point of time an observer 
an mark exa
t equidistant

positions in order to �x his frame of referen
e and that the observer 
an reg-

ister, within this frame, uniform translatory motions. This 
lassi
al 
on
ept is

generalized to other inertial frames of referen
e, to other observers, whi
h move

with uniform translatory motions. This idea of 
lassi
al physi
s 
ould, per-

haps, be physi
ally 
onstru
ted with mi
ros
opi
 point-like parti
les pla
ed at

equidistant positions and with exa
tly known velo
ities and at the required ex-

a
t time points. One 
an immediately see that su
h a physi
al 
onstru
t would

be impossible to realize. Nobody 
an register the exa
t positions and velo
i-

ties of mi
ros
opi
al parti
les. The 
on
ept of an inertial frame of referen
e is

s
ienti�
ally injudi
iously and 
annot be physi
ally 
onstru
ted. Therefore, the

prin
iple of relativity based on �inertial frames of of referen
es�, is s
ienti�
ally

very questionable. Sin
e its formulation by Einstein in 1905 spe
ial relativity

has met with massive 
riti
ism and its many paradoxes are dis
ussed today. It

is s
ienti�
ally appropriate to 
ompletely leave out �the prin
iple of relativity�

from all physi
al dis
ussions of laws of physi
s. Therefore, one 
an also question

whether the speed of light �in all inertial frame of referen
e� has the same value


. Also the �invarian
e of 
� must be re-postulated, without the prin
iple of

relativity. The new postulation of the invarian
e of the propagation of light is

that:

Light is always propagated in empty spa
e with a de�nite velo
ity,


, and it is independent of the state of motion of the emitting body.
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Or: The speed of light in free spa
e has the same value, 
, and it is

independent of the motion of the sour
e.

It obviously di�ers to the previous de�nition of the invarian
e of 
. The

invarian
e of the propagation of light is independent of ea
h frame of referen
e,

and it is also valid if an observer a

elerates. The distin
tion between SR

and GR, whi
h is de�ned in an uniformly a

elerated frame of referen
e, is

lapsed. The invarian
e of light propagation at c de�nes the Minkowski spa
e

with Riemann metri
 in whi
h an invariant distan
e is also de�ned as 
onne
ting

spa
e and time.

With the formulation of GR, Einstein took over the statement, that all bodies

have exa
tly the same a

eleration in an external gravitational �eld. Here, we

are again fa
ed with a situation that is mainly based on the 
lassi
al physi
s:

that that the a

eleration of bodies 
an be �exa
tly observed�. One of Einstein's

thought experiments said that in an elevator one 
annot de
ide whether the

elevator moves with an a

eleration motion, or be
ause of the in�uen
e of the

gravitation. He 
on
luded that gravitation is physi
ally not a physi
al for
e,

but it is 
aused by the deformation of spa
e-time around masses. Einstein's

�eld equation relates the presen
e of matter and energy to the 
urvature of

spa
e-time. On the left side of his equation we see a tensor that represents the

time-spa
e 
urvature. This is not a whole Riemann tensor; it only des
ribes

the Ri

i 
urvature. Einstein did not perform 
ontrol measurements for the

UFF hypothesis, with fall experiments and with di�erent 
omposed bodies,

Rather, he stated the weak equivalen
e prin
iple: the equivalen
e of the inertial

mass, mi
,and the gravitational mass, mg

, of ea
h bodies. Already planetary

motion has provided 
onditions for a UFF violation. With the best known data

about planets, taken from Allen's Astrophysi
al Quantities, 2000, the 
al
ulation

of R3/T 2
gives a di�eren
e of 0.15% between Uranus and Mars be
ause the


ompositions of the planets are quite di�erent. Therefore, it is s
ienti�
ally

justi�ed to 
onne
t the gravitational mass, mg
, anyhow with the generation of

gravity and the inertial mass, mi
, only in 
onne
tion to the motions in�uen
ed

by any for
es. This motivated a 
ompletely new design of the gravitation.

The new design of gravitational model requires a new physi
al assumption: the

introdu
tion of 
onserved elementary gravitational 
harges, gi. This physi
al

assumption is one of the new postulates and it 
an be experimentally 
on�rmed.

The elementary gravitational 
harges, gi, generate a 
ontinuous, time dependent

�eld for gravitational intera
tion. The gravitational �eld also propagates with

c whi
h was experimentally 
on�rmed with a measurement by Sergei Kopeikin,

2002 and by the LIGO dete
tion of gravitational waves, 2015. The numbers

and values for gi are derived from experimental observations and a 
onne
tion

is made between gi and the elementary massesme and mP in order to determine

the gravitational masses of ea
h body and the strength of gravitation (measured

with the universal gravitational 
onstant G).
Quantum theories (QT) are based on the fundamental assumption that light

is quantized. For quantization the Einstein postulate E = hν is used. This


onne
ts the energy of photons with the Plan
k 
onstant, h, and the frequen
y

of the light ν. Consequently, the emission of light by atoms is interpreted as
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a 
orpus
ular phenomenon. However, from the observed sizes of mi
ros
opi


obje
ts and from the wavelengths of their radiation we 
an 
on
lude that all

mi
ros
opi
 obje
ts are smaller than the wavelengths of their ele
tromagneti


radiation ( Szász, 2005). Therefore, light emissions are always wave phenomena,

not 
orpus
ular. Light is nothing other than ele
tromagneti
 waves; a time

dependent 
ontinuous ele
tromagneti
 �eld generated by elementary ele
tri



harges, qi, and propagating with c. The ele
tromagneti
 �eld is not quantized

and, 
onsequently, the energies of the emitting bodies are also not quantized.

Supposing that 
onserved elementary 
harges, qi and gi, are the only phys-

i
al properties of parti
les, we 
an de�ne stable elementary parti
les with qi
and gi. We are now able to introdu
e the fundamental intera
tion between

the elementary parti
les in a generalized form as the sum of ele
tromagneti


and gravitational intera
tions. We state that the intera
tion between the par-

ti
les propagate with c. This generalized intera
tion allows the general use of

Minkowski spa
e with an Riemann metri
. We must not use di�erent metri
s

for ele
tromagneti
 intera
tions or for gravitation.

The new basi
 postulates in physi
s are

1. The 
ontinuous intera
tion �eld is always propagating in empty

spa
e with a de�nite velo
ity, 
, and it is independent of the state of

motion of the intera
ting body. Or: The speed of intera
tion in free

spa
e has a 
onstant value, 
, and it is independent of the motion of

the sour
es, (invarian
e of intera
tion).

2. The sour
es of the intera
tion �eld are quantized with 
onserved

elementary 
harges. The sour
es of the intera
ting �eld are the stable

elementary parti
les, (prin
iple of quantization).

3. All physi
al systems are to be des
ribed in �nite range of spa
e-

time and neither the positions, nor the velo
ities of parti
les 
an be

ever observed exa
tly, (prin
iple of un
ertainty).

With these postulates we shall 
onstru
t a general physi
al theory whi
h

is independent of any frames of referen
e and whi
h is valid at ea
h possible

parti
le velo
ities, v, where it doesn't matter how large they are in a

ordan
e

with v < c. The physi
al realization a

ording to the basi
 postulates follows

now.

2 Equation of Motion for the Fields

The spa
e-time 
ontinuum is des
ribed within �nite ranges of Minkowski spa
e

{x = (r, t)}εΩ. Minkowski spa
e is a 
ombination of Eu
lidean spa
e, r, and

time, t, in a four-dimensional manifold where the spa
e spa
e-time interval be-

tween any two points is independent of any 
oordinate system in Ω. This spa
e
has a Minkowski metri
 whi
h is a metri
 tensor η of the Minkowski spa
e.

The Minkowski metri
 is a pseudo-Riemannian metri
. The mathemati
ian

Hermann Minkowski �rst developed it for Maxwell's equations of ele
tromag-

netism. The Lorentz transformations Λµ
v are 
oordinate transformations with

Λ−1Λ = η whi
h allow the distan
e between two points in Minkowski spa
e
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(s)2 = xαx
α = c2 · (t1 − t2)

2 − (x1 − x2)
2 − (y1 − y2)

2 − (z1 − z2)
2. (1)

invariant and let be the Maxwell equation form invariant. The tiny invariant

distan
e ds is de�ned by

(ds)2 = dxαdx
α = (c · dt)2 − (dx)2 − (dy)2 − (dz)2. (2)

A standard basis for Minkowski spa
e is a set of four mutually orthogonal ve
-

tors, e0, e1, e2, e3, written as

η(e0e0) = −η(e1e1) = −η(e2e2) = −η(e3e3) = 1, (3)

or written 
ompa
tly

η(eµeν) = ηµν . (4)

The metri
 tensor η 
an be used to lowering or to heightening an index. The

four-ve
tor des
ribed with b = bνeν transform under Lorentz transformation

b′µ = Λv
µbν , (5)

and leaves a Lorentz s
alar

b′µb
′µ = Λv

µbνΛ
µ
v b

ν = bµb
µ, (6)

invariant. The Einstein notation b = bνeν is used, whi
h means double o

urring

indi
es are the sum of all four 
omponents v = (0, 1, 2, 3). In Minkowski spa
e

the Lorentz s
alars, four-ve
tors, four-tensors and four-spinors, 
an be de�ned;

ea
h have de�nite transformation behaviors. With two four-ve
tors, analogously

to Eq. (6), a Lorentz s
alar

a′µb
′µ = Λv

µaνΛ
µ
v b

ν = aµb
µ, (7)

is invariant under Lorentz transformation. Examples of Lorentz s
alars are for

instant xαx
α
and dxαdx

α
. Analogously, a four-tensors Fαβ (x) 
an also be used

to de�ne an invariant (a Lorentz s
alar)

F ′

αβ(x)F
′αβ(x) = Fαβ(x)F

αβ(x). (8)

Please note: the Lorentz transformation 
ould be parametrized in a way that

would be interpreted as rotation-free 
oordinate transformation with a real pa-

rameter v/c, but v is not the observed 
onstant velo
ity of the embedded bodies.

One 
an 
onstru
t a Lorentz invariant Lagrange density, L, for a Lorentz

s
alar a
tion integral from the four-ve
tor potentials A(em)ν(x), A(g)ν(x), with
the four-
urrent 
harge densities j(em)ν(x), j(g)ν(x), and from the Faraday four-

tensors

F
(em)
αβ (x) = ∂αA

(em)
β (x)− ∂

β
A(em)

α (x), (9)
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F
(g)
αβ (x) = ∂αA

(g)
β (x)− ∂

β
A(g)

α (x). (10)

In ea
h 
ase denotes (em) the ele
tromagnetism and (g) the gravitation. The

Lagrange density is de�ned on {x = (r, t)}εΩ

L(x) = L(p)(x) + L(em)0(x) + L(em)Int(x) + L(g)0(x) + L(g)Int(x), (11)

with a uniform de�nition of terms for the ele
tromagnetism and the gravitation

L(em)0(x) + L(em)Int(x) = −
F

(em)
λ̺ (x)F (em)λ̺(x)

4
− j(em)

α (x)A(em)α(x), (12)

L(g)0(x) + L(g)Int(x) = −
F

(g)
λ̺ (x)F (g)λ̺(x)

4
+ j(g)α (x)A(g)α(x). (13)

The L(p)(x) denotes the intera
tion free parti
les; L(em)0(x), L(g)0(x) denote

the free �elds and L(em)Int(x), L(g)Int(x) denote the intera
tions between the


harges and the �elds. Please note: L(x) is not an expression for the energy

density. The Lorentz s
alar a
tion integral is then

I =

ˆ

Ω

L(x)(dx)4. (14)

The Hamilton prin
iple, within the variation 
al
ulus for Lagrangian, deliver

the equations of motions of the �elds

∂α∂
α

A(em)β(x) = +j(em)β(x), (15)

∂α∂
α

A(g)β(x) = −j(g)β(x). (16)

However, the four-ve
tor potentials must full �ll the subsidiary 
onditions

∂αA
(em)α(x) = 0, (17)

∂αA
(g)α(x) = 0. (18)

Eq. (17) is the Lorenz gauge for the ele
tromagneti
 �eld. Be
ause the integra-

tion for I is performed in �nite ranges of Minkowski spa
e, Ω, we need boundary
and subsidiary 
onditions for all quantities are needed whi
h build the Lagrange

density, (see, M. Giaquinta & S. Hildebrandt; Cal
ulus of Variation I: The La-

grangian Formalism). Eq. (15) is the Maxwell equation for the ele
tromagneti


�eld and the di�eren
e to the gravitation �eld equation, Eq. (16), is only a


hange of the sign at the four-
urrent 
harge densities.
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3 Elementary Gravitational Charges and Consequen
es

The four stable elementary parti
les are the ele
tron (e), the positron (p), the

proton (P) and the elton (E). Their elementary ele
tri
 
harges, qi, are well-

known

qi = {−e,+e,+e,−e}, i= e, p, P,E. (19)

Coulomb law states that stati
 for
e F
(Coulomb)
ij (rij) exists between two ele
tri



harges, qi and qj , with a relative distan
e, rij . We will now as
ertain the

elementary gravitational 
harges, gi. We use this for the Newtonian equation

for the stati
 gravitational for
e between gi and gj

F
(Newton)
ij (rij) = −gi · gj · rij

4π · r3ij
= ∓G · mi ·mj · rij

r3ij
. (20)

The 
onserved gravitational 
harges of the stable elementary parti
les are set

up as

gi = {−g ·me,+g ·me,+g ·mP ,−g ·mP }, i = e, p, P,E. (21)

The gi values are expressed with the elementary masses of the ele
tron me, and

the proton mP , and with g = +
√
G · 4 · π. The spe
i�
 gravitational 
harges,

g > 0, are the same for all four elementary parti
les. Equations. (20) and (21)

also show the signs of gi. The Newtonian for
e F
(Newton)
ij (r) with two 
harges,

gi and gi, 
orresponds to an attra
tive for
e between gravitational 
harges of

the same sign (the original Newtonian equation featured the universal gravita-

tion 
onstant G) and a repulsive for
e for 
harges with di�erent signs. This is


ontrary to the behavior of ele
tri
 
harges. Therefore, a sign 
hange appears in

Eqs. (15) and (16). The elton is a negatively 
harged proton, normally known in

the parti
le physi
s as �antiproton�. Euler and Lagrange used point-like masses

with the same sign of gi. The result was a purely attra
tive gravitational for
e.

With Eq. (20) and with 
onserved gravitational 
harges, gi, the gravitational
mass of an ele
tri
ally-neutral isotope with the mass number A 
an be derived.

Note: the isotope 
ontains A protons and A ele
trons, 
an be derived as

mg(A) = A · (mP −me). (22)

The gravitational mass is independent of the number of positrons Np 
ontained

in an ele
tri
ally-neutral isotope. Also the inertial mass of an isotope with Np

ele
tron-positron pairs and with the bound energy, Ebound(A), 
an be derived:

mi(A) = A · (mP +me) + 2 ·Np ·me − Ebound(A)/c
2. (23)

In Equations (22) and (23) it is assumed that there are no eltons present. From

these equations it follows that the inertial mass and the gravitational mass are
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di�erent. A

eleration in the Newtonian equation of motion in the gravitational

�eld depends on A through the mass defe
t Delta(A)
mg(A)/mi(A) = 1 +Delta(A).
The mass defe
t 
an be 
al
ulated with the known inertial masses of iso-

topes to −0.109% < Delta(A) < +0.784%. The value −0.109% belongs to the

hydrogen atom and the greatest value +0.784% to the isotope

56Fe.

4 Equation of Motion for the Parti
les

With the 
onserved elementary 
harges, qi and gi, we 
an express the four-


urrent 
harge densities, j(em)ν(x), j(g)ν(x), as

j(em)ν(x) =
∑

i=e,p,P,E

qi · j(n)νi (x), (24)

j(g)ν(x) =
∑

i=e,p,P,E

gi · j(n)νi (x), (25)

written with the four-
urrent parti
le number densities

j
(n)ν
i (x) = (c · ̺i(r, t), ji(r, t)), i = e, p, P,E. (26)

Whereby the ̺i(r, t) is the density of parti
les i and ji(r, t) the appropriate 
ur-
rent density. It should be noted that there is a di�eren
e between the meaning

of ̺i(r, t) and ji(r, t), when looking at 
lassi
al physi
s and quantum physi
s

with dis
rete 
harges qi and gi. For 
lassi
al physi
s j
(em)0
i (x) = c · qi · ̺i(r, t)

in the expression

qi = ̺
(em)0
i (r, t)dV = c · qi · ̺i(r, t)dV, (27)

if the volume dV is su�
iently small and 
ontains the 
harge qi, the 
harge

density is 
onsidered as a 
ontinuous fun
tion for the ele
tri
 
harge of the

parti
le kind, i. In quantum physi
s ̺i(r, t), ji(r, t) and j
(em)ν
i (x), i = e, p, P,E

are ex
lusively the probability densities for 
harges and 
urrents. The 
hange in

the meaning of j
(em)ν
i (x), respe
tively for j

(g)ν
i (x), is often forgotten when using

Maxwell equation, Eq. (15). Setting equations (24) and (25) into Eqs.(15) and

(16), we gain an expression of the equation of �eld motion with the elementary


harges qi and gi and with the four-
urrent probability densities for the parti
les

j
(n)ν
i (x) of the kinds i = e, p, P,E.

To obtain the equations of parti
le motions, we �rst set the Lorentz s
alar

expression

L(p)(x) =
∑

i=e,p,P,E

mi · c · ∂νj(n)νi (x), (28)
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in the Lagrange density. The 
onstants mi · c are appropriately 
hosen to set

in L(p)(x) together with the other terms. Furthermore, we have to express

j
(n)ν
i (x) with something like a quadrati
 form in order to perform the variation

of the a
tion integral I to obtain the equations of parti
le motion. A form

of ψi ∗ (x) · ψi(x) with a 
omplex valued s
alar fun
tions ψi(x) in not suitable,

be
ause it would not 
orrespond to the statements that NEITHER the positions,

NOR the velo
ities of the parti
le are ever exa
tly known. For this reason we


ould 
hose the Dira
 spinors Ψi(x) and the adjoint spinors Ψi(x) = Ψ∗

i (x)γ
0
for a

suitable 
onstru
tion. Sin
e we know the relation j
(n)ν
i (x) = (cρ

(n)
i (x), j

(n)

i
(x)),

we 
an express j
(n)ν
i (x) as

j
(n)ν
i (x) = c · Ψ i(x)γ

νΨi(x). (29)

with the well known four-matri
es γν lending the 
orre
t transformation behav-

iors for the four-ve
tors j
(n)ν
i (x) . The spinors 
an be normalized at ea
h time

t = t0
ˆ

V

j
(n)0
i (r)/c · d3r =

ˆ

V

Ψi ∗ (r)γ0Ψi(r)d
3r

=

ˆ

V

∑

k=0,3

Ψ⋆
i,k(r) · Ψi,k(r)d

3r = Ni. (30)

The 
ontinuity equations ∂νΨ i(x)γ
νΨi(x) = 0 take 
are to the time development

of the spinors. Simultaneously, the 
ontinuity equations with Eq. (29)

ˆ

Ω

∂νj
(n)ν
i (x)(dx)4 = Gi = 0, i = e, p, P,E (31)

are the subsidiary 
onditions for the parti
les of the variation

δI +
∑

i=e,p,P,E

λδGi = 0. (32)

whi
h produ
e a real valued Lagrange multiplier λ > 0 in �nite spa
e-time re-

gions Ω. Indeed, we are expe
t more Lagrange multipliers, λi, with di�erent

values. For simpli
ity Eq. (32) is written with only one λ. The mathemati-


al pro
edure 
onsidering boundary and subsidiary 
onditions for �
ontinuous

systems� is seldom used for basi
 statements in physi
s. It isn't used for the

quantization of the probabilisti
 wave fun
tion, or for the spinors, or for the par-

ti
le �elds. Nevertheless, applying the Hamilton prin
iple with the subsidiary


onditions that Gi = 0 at the variation of the Lagrangian, we get the equation

of motion for parti
le, i, and Lagrange multiplier, λ,

(mi · c2 + λ · c) · (γα∂αΨi(x))

+qi · c ·A(e)
α (x)γαΨi(x) = 0. (33)
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Here, for simpli
ity, we have negle
ted the gravitation, but not the elementary

masses, mi. This di�erential equation is linear in all derivations and Eq. (33)

expresses the movement of parti
le i within the framework of the new basi


prin
iple. This is a 
ompletely new de�nition of parti
le motions 
ompared to


lassi
al physi
s and non-relativisti
 quantum me
hani
s (as des
ribed by the

S
hrödinger equation).

5 Relativity for the Motion of Parti
les

This framework automati
ally leads to relativity if we want to 
onsider bound

states of two (or more) parti
les in their mutual intera
tion whi
h is temporally

stationary. In 
lassi
al physi
s it is easy to separate the motion of 
enter of

mass COM (with mass mCOM
ij = mi +mj), and the relative motion with the

redu
ed mass, m′

ij =
mi·mj

mi+mj
. But this relativity has nothing to do with the SR

or GR theories. Within this framework one 
an address two di�erent motions

with mCOM
ij and m′

ij . But the treatment of temporally stationary motion of two

parti
les in the mutual intera
tion 
orresponds to the treatment of 
onditional

probability: if parti
le j is at the position xj what would be the probability of

�nding the parti
le i in a distan
e of xij = xi−xj . Con
erning the relative mo-

tion of parti
le i we disregard the frame independent 
ondition and the Lorentz

invarian
e of the relative motion and a new 
ondition appears: we are look-

ing for timely stationary relative motions. As a 
ondition, we 
an assume the


ondition that both parti
les are simultaneously within a spa
e-time region Ω′
.

That is, parti
le numbers 
onservation in Ω′
is also valid and so Lagrange mul-

tipliers appear. However, the Lagrange density of the relative motions 
on
erns


onditional probabilities. We should always bear this 
ir
umstan
e in mind if

we 
onsider the Dira
 Lagrange density of the 
onventional quantum theory:

LQT = −i~cΨγα(∂α − ieA(em)α)Ψ −m′c2ΨΨ − 1/4 · F (em)
µν F (em)µν , (34)

whi
h gives the movement of a parti
le with the mass, m′
, and with the ele
tri



harge, e. At the position of the Lagrange multiplier, λ, the Plan
k 
onstant

~ = h/2π appears. Anyhow ~ in
orporates λ and the 
ondition that the motion

is timely stationary. The Dira
 Lagrange density in Eq. (34) is also distinguished

from our Lagrange density. The 
al
ulation of the Plan
k 
onstant, h, derived
by Sommerfeld, h = e2/2c ·

√

m′ · c2/2 · Ebound = e2/2c · 1/α is really not

understood within the 
onventional quantum me
hani
s, i.e. it is not known

why is α = 1/137.01. The expression

√

2 ·Ebound/m′ · c2 was interpreted as

relative velo
ity v/c in the mutual intera
tion. This relative velo
ity 
ould be

near c, even if the COM motion is far away to be relativisti
. The Ebound is

the radiated energy of the many-parti
le motion in the mutual intera
tion and

this term appears also in the expression of inertial mass, Eq. (23). As the

inertial mass, mi
, 
annot be less then zero, the radiated energy Ebound/c

2

an

be maximal equal to the sum of parti
le masses 
omposing a may-body system.

However, the stable elementary parti
les 
an never be annihilated or 
reated.
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Summary

New basi
 postulates in physi
s were set up and 
ompared with the known

postulates of QT, SR and GR. Within the new basi
 postulates, the equations

of motions for the ele
tromagneti
 and gravitational �elds are derived in a uni-

�ed level. The introdu
tion of 
onserved elementary gravitational 
harges, gi,
and the determination of their physi
al properties allowed the 
onstru
tion of

a gravitation model also for parti
le physi
s. The a
tion integral, I, is not an
expression for energy; it deals with non-
onservative intera
tions in �nite spa
e-

time regions, Ω. The equations of motions for the �elds and parti
les were

derived from a Lorentz s
alar a
tion integral within a Lorentz-invariant theory

(LIT). The intera
tions between stable parti
les are 
aused by two 
ontinuous

�elds, ele
tromagnetism and gravitation. The �elds are generated by two kinds

of 
onserved dis
rete/quantized 
harges. Completely new di�erential equations

were presented for the motions of parti
les, as usually used in 
lassi
al physi
s,

or non-relativisti
 quantum me
hani
s. The 
lassi
al Newtonian equation of

motion in a gravitational �eld was also enhan
ed, be
ause there is a di�eren
e

between the inertial mass, mi
, and the gravitational mass, mg

. The new basi


postulates have led to an atomisti
 physi
s, based on four kinds of stable elemen-

tary parti
les. None of the 
onventional energeti
 physi
s, mi = mg
, E = mc2

and E = hν have been retained. Furthermore, the 
on
ept of wave-parti
le

dualism 
an now be disregarded. Sin
e neither the positions, nor the velo
ities

of parti
les 
an be exa
tly observed, the identi
al a

eleration of ea
h body (the

UFF) within a gravitational �eld 
an also not be assumed. The validity and

the distin
tion of SR and GT are s
ienti�
ally questionable. This paper has

shown that the laws of physi
s are non-deterministi
, however 
ausal. Quod

erat demonstrandum
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