12. Retrospection

The State of and Some Important Events in Science and the NEW MODEL

Summarized by Gy. I. Szász, the /07/02/2005		The bold face written statements give the basics of the New Model . The statements with quotation (") are questioned.			
Year	ar <u>Experimental Results</u>		Technical Advantages	<u>Year</u>	Theoretical Mile Stones
		1590	Discovery of microscopes (Z.	1543	Heliocentric world system. (N. Copernicus)
1610	Discovery of Jupiter moons. Fall experiments with		Janson)	1609-	Discorti: Hypothesis of "the Universality of Free Fall" (UFF), introduction
	different materials, $\sim 10^{-2}$ accuracy. (G. Galilei)	1637	Optical instruments. (R. Descartes)		of the mass and kinetics. (G. Galilei) "The laws of planets motions". (J. Kepler)
1628	De muto cordis etsan quinis (W. Harvey)		Microscopes and telescopes,	1637	The agens and passum forces. (G. B. Balani)
1676	Measurement of the light velocity c. (O. Römer)		(E. Torricelli)	1678	Light as a "corpuscle" (I. Newton) and as wave (Ch. Huygens).
1686	Pendulum: m ^{I} =m ^{G} with ~10 ⁻³ accuracy. (I. Newton)			1687	Principia: Space, time and mass m dF=d(mv); Lex Secunda. The law
1710	Mercury Thermometer. (D. G. Fahrenheit)				of gravitational force. (I. Newton) "The constant G is understood under
1747	Separation of + and - electric charges. (W. Watson,				the condition of equality of inertial mass m^{I} and gravitational mass m^{G} ."
	B. Franklin)	1740	Temperature scale (A. Celsius)	1736-	Development of analytical mechanics. "The canonical coordinates are
1775	The law of electrostatic force. (C. A. Coulomb)				determinable; the masses are unchangeable; moving bodies do not radiate
1789	Introduction of chemical elements. (A. L. Lavoisier)	1780	Calorimeter (J. K. Wilcke, A. L.		in fields; the energy conservation of bodies." Extremal and variation
1798	$G = 6.74(5)x10^{-11} m^{3} kg^{-1} s^{-2}$ (H. Cavendish)		Lavoisier)		principles. (L. Euler, P. L. M de Maupertuis, J. Le Rond d'Alambert,
1800	Galvanic cells. (L. Galvani, A . Volta)			1800	J. L. de Lagrange, W. R. Hamilton, P. S. de Laplace, C. G. J. Jacobi)
1812	Equivalence of gravity and electrostatics. (D.			1811	Hypotheses of atoms (J. Dalton) and molecules (A. Avogadro).
	Poisson)				Universal thermo-state-equation of ideal gases. (J. L. Gay-Lussac)
1820	Discovery of electromagnetism. (H. C. Örsted)			1820	Magnetic force of currents. (J. B. Biot, S. Savart, P. S. Laplace)
1825	Electrodynamics units. (A. M. Ampére)			1826	Ohm's law of electric currents. (G. S. Ohm) Non-mechanical systems
1831	The electric induction. (M. Faraday)				have to be treated such exactly as mechanical systems. (J. B. Fourier)
1832	Pendulum: "m ^{I} =m ^{G} with 5x10 ⁻⁵ accuracy"	1832	Electrolysis. (M. Faraday)	1832	Mathematics of continuous systems. Magnetic units. (C. F. Gauss)
	with some known materials. (F. W. Bessel)	1833	Inductors, electric machines.	1933	Chemical equivalence of the same charge amount. (M. Faraday)

<u>Year</u>	Experimental Results	<u>Year</u>	Technical Advantages	<u>Year</u>	Theoretical Mile Stones
	Electrolyse (M. Faraday)		Begin of industrial revolution.	1836	Eikonal theory of waves: The relation of the wavelength to the size of objects
1841	Acceptance of Ohm's law (G.S. Ohm)	1839	Photography. (R. L. M. Daguerre)		determines the wave or corpuscle character of light. (W. R. Hamilton)
1842	Doppler effect of light. (Ch. Doppler)			1842	Generalized energy conservation. (J. R. Mayer, K. P. Joule)
1850	Foucault's pendulum experiment. (J. B. L. Foucault)			1850	Mathematics of e.m. field. (L. Euler, D. Poisson, C.F. Gauss, G.G. Stokes)
				1854	Mercury's perihelion rotation: 43" per century. (U. J.J. Le Verrier)
				1859	Universal radiation at temperature equilibrium. (G. Kirchhoff)
		1860	Spectral analysis. (R. W. Bunsen)	1860	Universal distribution of velocity in gases. (J. C. Maxwell)
		1863	Ammoniac synthesis. (E. Solvay)		Space geometry manifolds and differential metric. (G.F.B. Riemann)
1865	First estimation of atom size, $\sim 10^{-7}$ cm and number	1864	Nitro-glycerine. (A. Nobel)	1865	Electromagnetism and light is unified in the same theory.
	of atoms in one mol, $L\sim 10^{26}$. (J. Loschmidt)			1869	The period system of elements. (D. Mendelejeff) The connection of
1876	Discrepancy of specific heats of gases.				space geometry manifolds and interacting forces. (G.F.B. Riemann)
1879	Temperature dependence of radiation. (J. Stefan)	1879	Fourth state of matter = 'plasma'.	1880	Relativity of motions postulated (E. Mach)
1881	c-experiment of A. A. Michelson and E. W. Morley.		(W. Crookes)	1881	The Maxwell Equations of Electrodynamics. (J. C. Maxwell)
	International units for electromagnetism.				The radiation of moving electric charges; the Lorentz force in the e.m.
1884	Spectral distribution of e.m. radiation.				field. (H. A. Lorentz) Atomic theory and electricity. (H. v. Helmholz)
1885	First rule of atomic spectra. (J. J. Balmer)			1884	Emissivity of black body from thermodynamics and Maxwell-Eqs. (L.
		1888	Electric dipole radiation.		Bolzmann) Energy law in e.m. field and electric charged bodies. (O.
1889	Torsion Balance experiment: The gravitational force		(H. Hertz)		Heaviside, J. H. Poynting)
	is the same for different materials. (L. von Eötvös)			1893	T dependence of e.m. radiation density at equilibrium. (W. Wien)
1895	Discovery of X-Rays. (W. C. Röntgen)			1895	Thermodynamic of chemical reactions essentially completed.
1896	Discovery of the radioactivity. (A. H. Becquerel;				Absolute temperature T, fundamental constant $\mathbf{k}=\mathbf{nR}$, entropy S.
	M. Curie)				(H. v. Helmholz, J. P. Joule, R. Clausius, L. Boltzmann, J. W. Gibbs)

<u>Year</u>	Experimental Results	Year	<u>Technical Advantages</u>	<u>Year</u>	Theoretical Mile Stones
1897	Discovery of charged electron (e) and the			1897	The producer of spectral lines are particles with the same q/m_e as the
	estimation of q/m_e . (J. J. Thomson)				particles in cathode rays. (H. A. Lorentz)
	The split of spectral lines. (P. Zeeman)	1898	Liquefaction of H $_2$.	1898	Chemistry do not have a unified picture of atoms and molecules.
		1899	Roentgen apparatus.		In physics the atom hypothesis is disputed. (L Boltzmann contra W. Ostwald)
1900	$h = 6.55 \times 10^{-27}$ erg s, $k = 1.38 \times 10^{-16}$ erg/K			1900	M. Planck's radiation formula with a fundamental constant h .
1903	The photoelectric effect. (F. Lénard)				"Interpretation of $h \upsilon$ as energy quantum of harmonic oscillator".
				1904	Covariant electrodynamics. The electric charge is invariant and is
					conserved. Lorentz transformation. (H. A. Lorentz, H. Poincaré))
1905	First systematic of spectral lines. (J. J. Balmer,			1905	The special relativity. (Lorentz, Einstein, Poincaré)
	W. Ritz)				"Photon hypothesis = the quantization of the energy with $h U$ ".
					"The mass-energy equivalence principle $E = m c^2$." (A. Einstein)
				1907	"Equivalence of inertial and gravitational mass and the constant $\mathbf{G} = the$ Weak
					Equivalence Principle (WEP)." > "A base of geometrized gravity." (A. Einstein)
		1908	Liquefaction of He.	1908	The four dimensional world. (H. Minkowski)
1910	Measurement of elementary electric charge e. (R. A.	Millik	en)	1910	Introduction of isotopes. (F. Soddy)
1911	Discovery of nuclei. (E. Rutherford)			1911	q , \mathbf{m}_{e} and h determine the atom size. (A. Sommerfeld)
1912	Discovery of cosmic rays. (V. F. Hess)				Discovery of supra conductivity with $B=0$. (H. Kamerlingh-Omnes)
		1913	Geiger counter. (H. Geiger)	1913	The h and the atom: "Bohr's atom model." (N. Bohr)
1914	Experiment of J. Frank and G. Hertz.				
1915	Alfa, beta and gamma decays of nuclei. (E.			1915	"Field equations of the General Relativity Theory (GRT)." (A. Einstein)
	Rutherford)			1916	"Black hole singularities." (K. Schwarzschild)
1919	Discovery of proton (P) with the mass m $_{P}$.	1919	Alfa particle scattering on	1918	Invariant variation problems, Noether theorem. (E. Noether)
	Eddington's "expedition for the GRT".		N nuclei (E. Rutherford)		

Year	Experimental Results	Year	Technical Advantages
1920	Discovery of the galaxies. (E. Hubble)	1920	Mass spectrometers. (F. C. As
	Proton = nucleon of hydrogen. (E. Rutherford)		
		1921	Supra fluidity of He.
1922	"The Compton effect". (A. H. Compton) Torsion		Diverse counters for charged
	balance: "m ^{I} =m ^{G} ," with ~10 ⁻⁹ accuracy". (Eötvös)		particles and gamma rays.
1926	"Hypothesis for spectral lines: the spin 1/2 of		
	electron". (G. E. Uhlenbeck, S. Goudsmit)		
		1913	Geiger- Müller counter.
1929	The word 'plasma' used firstly by I. Langmuir.		
1930	"The Universe expands isotropic."	1930	First cyclotron. (E. O. Lawren
	G μ T ² ~1, μ =averaged mass density in the Universe,		
	$\mu = 10^{-29}$ g/cm2, T=10 ¹⁰ year. (E. Hubble)	1931	Electron microscope.
1932	Discovery of the positron (p) with the mass m _{e} (C.		
	D. Andersen) and of the neutron. (J. Chadwick)		
	"Neutron is an elementary particle."		
1937	Investigations of cosmic rays (protons and nuclei).		
1938	Discovery of nuclear fission. (O. Hahn, F. Strassman)		
	"Discovery of Myon particles". (S. H. Neddermeyer,	1940	First computer. (J. Neumann)
	C. D. Anderson)	1942	First nuclear reactor. (E. Ferm

iges	Year	Theoretical Mile Stones
. (F. C. Aston)	1920	h is mysterious and has an increasing importance. (M. Born)
		"h is interpreted as quantum of action."
	1921	Bohr's intuitive theory of periodical system of chemical elements.
r charged		
a rays.	1924	<i>h</i> is responsible for the " <i>dualism of particle and wave</i> ". (L. de Broglie)
	1926	Wave equation of H-atom for "energy quantization". (E. Schrödinger)
		Formulation of Quantum Mechanics. The " <i>universality</i> of <i>h</i> " is accepted.
	1927	Hypothesis: "The uncertainty principle with h". (W. Heisenberg)
nter.	1928	The begin of Quantum-Electro-Dynamics (QED). The "second quantization"
		of fields and mass particles. The "universality of h, the energy-mass-
O. Lawrence)		equivalence, creation and annihilation of particles, closed systems and the
		quantization of energy" are accepted. (P. Jordan, P.A.M. Dirac, W. Pauli)
2.	1931	Hypothesis of mass-less neutrino for beta decay of nuclei. (W. Pauli)
	1932	"Two states of nucleon proposed: proton and neutron." (W. Heisenberg)
	1933	Begin of theoretical nuclear physics. "The theory of beta decay". (E. Fermi)
		Nuclear force: short ranged, in small distance repulsive, saturation.
	1935	Explanation of the unknown nuclear forces between proton and neutron
		through the hypothesis of "particle creation and annihilation". (H. Yukawa)
		"Each particle has its own antiparticle". (W. Heisenberg, P. A. M. Dirac)
	1936	Dispersion theory of nuclear reactions. (J. Wigner, G. Breit)
	1938	"The solar energy cycle." (4 protons in He-nucleus). (H. A. Bethe)
Neumann)		"There are four fundamental interactions assumed" beside the
. (E. Fermi,		macroscopically known gravitational and electromagnetic interactions.

Year	Experimental Results	<u>Year</u>	Technical Advantages	Year
1947	"Discovery of the Pion particles". (C. F. Powell)	1945	L. Szilard). The atom bombe.	
	"Discovery of the Kaon particles". (G. D. Rochester)			
	Distinction between Myons and Pions.			1947
	Exact measurement of the Lamb shift. (W. Lamb)			
1948	Magic numbers of nuclei 2, 8, 20, 40, 50, 82, 126	1948	First transistor. (W. H. Brattain)	1948
	(M. Goeppert-Mayer, H. Jensen)	1949	Semiconductor detectors. (K.G. Mad	cKay)
1955	Discovery of the negative charged antiproton =			1950
	elton (E) with the mass m $_{P}$. (E. G. Segré)	1955	6 GeV accelerator in Berkeley.	
	First detection of neutrinos. (F. Reines, G. A. Cowan)	1956	Technical supra conductors. (S.	1956
1958	Mössbauer effect. (R. L. Mössbauer)		C. Collins) Neutrino detectors.	
1960	All isotope masses m I are measured. (Tables of	1959	Technical amounts of Be	
	Nuclear Phys., J. Mattauch)		produced.	
1961	IUPAC: Atomic weights with C12 isotope.			1961-
	First estimation of proton, neutrino cross section:	1963	Integrated electric circuits.	1964
	0.11×10^{-42} cm ² . But, what are the neutrinos? What	1967	Proportional counters. (G.	1967
	are their properties? How many different neutrinos		Charpak et al.)	
	exist ?			1968
1972	Torsion Balance "m ^{I} =m ^{G} with 10 ^{-12} accuracy". (V.	1970	Particle storage circuits.	
	Braginsky) Laser hologram. (G. Dénes)			1973
1974	SLAC: New particle at 3 GeV, "charmed quarks".			1974
1975	Plasma experiments in IPP Garching/Germany.			

1976 Always more "*unstable particles*" are seen.

Year	Theoretical Mile Stones					
	Two further microscopic interactions:" the weak and the strong interactions".					
	The reasons of the microscopic interactions are unknown.					
1947	"The theory of Big Bang". (G. Gamow) Discovery of Hyperons in cosmic					
	rays. (G. D. Rochester, C. Ch. Butler)					
1948	"Quantum-Electrodynamics (QED)". (J. Schwinger, R. P. Feynman,					
acKay)	F. J. Dyson, S. I. Tomonaga)					
1950	"The conversion of neutral Pion in two gamma quanta". (D. E. Carlson)					
	High energy physics: "elementary particles change".					
1956	"Theory of parity violation". (T. D. Lee, C. N. Yang) Because of					
	lack of a microscopic valid Lagrange function for particle dynamics,					
	"a model for the strong interaction is proposed". (S. Sakata) The usage					
	of "isospin, strangeness etc." is an expression of physical unknowledge.					
1961-	SU(3) symmetry group, "the hypothesis of intrinsic symmetry of particles".					
1964	"The hypothesis of quarks": (M. Gell-Mann, G. Zweig)					
1967	A comparison of the SU(3) model with experiments: It offered					
	several inadequate and unphysical assumptions. (Gy. I. Szász)					
1968	The begin of a consistent description of unstable particles and					
	microscopic resonances at the University of Mainz. (Gy. I. Szász)					
1973	"A trial of Great Unified Theory". (H. Georgi, S. Glashow)					
1974	Microscopic resonance phenomenon and unstable particles described with a					
	variation principle of open particle systems. (Szász)					
1976	The years of development in "Quantum-Chromo-Dynamics (QCD)".					
	Always more new "intrinsic quantum numbers of quarks" are needed.					

Year Experimental Results

- 1977 L. Lederman: "New quantum number for quarks".Existence of a 80 GeV "boson"?
- 1983 "Discovery of heavy bosons". (C. Rubbia)
- 1987 Explosion of the star SN1987A observed.Nearly 200 "*unstable particles*" are known.
- 1989 Palladium catalyst causes heat from electrons and Deuterons. (M. Fleischmann, S. Pons)
- 1996
 Back ground radiation at 2.728 K. (J. Mather)

 The time dependency of G. (O. V. Karagioz)
- 1999 Torsion balance: "m^I =m^G with 5x10⁻¹³." (S. Baeßler)
- 2000 The uncertainty of the Newtonian constant G was set up by a factor of twelve (CODATA): $G = 6,673(10)x10^{-11} m^3 kg^{-1} s^{-2}$. Measurement of G with 14 ppm. (J. H. Gundlach)

Upper limit of neutrino mass: 2.2 eV. (E. W. Otten)

2004 Experimental verification of the composition dependent UFF violation in Bremen. (Szász) $m^{I} = m^{G}$ (1 – delta), with delta in the range of pro mille. Delta follows from the mass defect of isotopes, but at the experimental verification two types of elementary charges have to be included.

Year Technical Advantages

- 1977 500 GeV accelerator at CERN. New neutrino-detectors.
- 1979 30 GeV electron + positron energy at DESY. (Cosmic rays have up to 10^{11} GeV energy.)
- 1990 New Hubble telescope.
 Radioactive particle accelerators.
 1997 Investments of 10 milliard dollar
 for high energy accelerators!

Year Theoretical Mile Stones

- 1977 [Eikonal theory excludes the existence of photons at radiation of bound particles. The Planck's constant *h* is not universal. The four stable particles (e, p, P, E) do not have intrinsic angular momenta. The canonical coordinates of particles are principally undeterminable. Two types of elementary charges (electric and gravitational charge) exist of the four Elementary Particle. Do the (e,P) and (p,E) systems radiate always? Therefore, the particles energy is not conserved in these bound states? The (e,p) and (P,E) systems have stable bound ground states in which both net charges are zero: Two types of neutrinos exist. (Unpublished investigations by Szász)]
- 1997 The planet and exoplanet orbits are not arbitrary and **fulfil** a Schrödinger like equation. (L. Nottale and others) For discrepancies in gravity a "*fifth fundamental force*" is sought by the Eöt-Wash Group/Seattle and others.
- 2001 Hypothesis (Szász): Only four Elementary Particles (EP) with two types of charges exist: electron, positron, proton and elton. The four EP are else
- 2002 point-like and structure-less. The elementary gravitational charges are $\mathbf{g}_1 = -\mathbf{gm}_e$, $\mathbf{g}_2 = +\mathbf{gm}_e$, $\mathbf{g}_3 = +\mathbf{gm}_P$ and $\mathbf{g}_4 = -\mathbf{gm}_P$. The numerical value of the gravitational constant is $\mathbf{G}=\mathbf{g}^2/4\pi = \mathbf{6},\mathbf{576}(\mathbf{6})\mathbf{x}\mathbf{10}^{-11} \mathbf{m}^3 \mathbf{kg}^{-1} \mathbf{s}^{-2}$.
- 2003 Field equation for the non-conservative gravity $\partial_{\alpha} \partial^{\alpha} \mathbf{A}^{(g)\beta} = -\mathbf{j}^{(g)\beta}$ with $\partial_{\beta} \mathbf{j}^{(g)\beta} = \mathbf{0}$ and $\partial_{\beta} \mathbf{A}^{(g)\beta} = \mathbf{0}$. The sources of the gravitational

field is quantized with superposition rule for g-charges.

The gravitational charges are invariant Maxwell charges.

Unified Field Theory for electromagnetism and gravity with the four EP. Principles for a New Model of physics of elementary processes.