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7. Treatment of the Fundamental Field with Calculus of    

Variations 
 

Abstract: A fundamental revision of the accepted Standard Model of Physics 

has to be performed because neither the assumption of classical physics, the 

equivalence of inertial mass and gravitational mass, nor the used quantum 

conditions of microscopic physics appear to be valid hypotheses. The 

fundamental field (UF) consisting of the electromagnetic field and the covariant 

gravitational field generated by four types of sources is central in physics. The 

sources = quanta of the UF are represented through the four stable particles e, p, 

P and E, having two kinds of Maxwell charges. The source quantization leads to 

variation principles of open physical systems in finite space-time domains  . 

Beside Planck’s constant h, at least a second basic constant h 0 =1/(4 2 )x q 2 /c 
exists which is responsible for the neutrinos as bound states (e,p), (P,E) and for 

nuclear forces. The source quantization of the UF is resulting in investigations of 

variation problems within a set of new fundamental hypotheses of physics. 

PACS Numbers: 03.70.+k, 04.20.Cv, 12.10.-g, 13.15.+g  

 

The accepted Standard Model seems precisely explain nature. However, 

criticism has to be made on the historically gathered hypotheses which is not 

marginal but fundamental. The result leads to the manifest covariant 

fundamental field (UF) consisting of electromagnetism and gravity generated 

through the four stable particles with two kinds of Maxwell charges. The 

composition dependent relation  

(m g - m i ) =E bound/ c 2  > 0,  
of the inertial and gravitational mass of atoms is verified by the author in a fall 

experiment in Ref. [6], see also Refs. [1, 2]. Furthermore, all microscopic 

objects are essentially smaller than the characteristic wave lengths of their 

radiation Fig. 1. Therefore, a dominance of the wave character of the 

electromagnetic field can be assumed in all microscopic processes. The 

explanation of the line spectra is connected the source quantization, with the 

usage of open systems and with restrictions of physical descriptions onto finite 

space-time domains, Refs. [3, 4]. A set of new basic principles of physics, Ref. 

[5], leads to variation problems with isoperimetric subsidiary and natural 

boundary conditions. Planck’s constant h and a second fundamental constant h 0  

are supposed to be connected with Lagrange multipliers. The latter constant is 

responsible for the neutrinos and for the nuclear forces, Ref. [3]. The assumed 

universality of h and of Heisenberg’s uncertainty relation appear as 

impermissible generalizations. The new basic hypotheses flow in a New Model, 

centralizing in physics the Unified Field (UF) and the four stable point-like 

elementary particles with two Maxwell charges: the electron (e), positron (p), 

proton (P) and the negative charged proton with the name elton (E). These four 

particles quantize the sources of the UF and are able to elucidate many features 

nowadays unknown.  

In order to avoid discrepancies and impermissible generalizations, which are 

inherent in the accepted assumptions of physics, and to clear up principal 

unknown, a set of new basic hypotheses is formulated by the author in Ref. [5]. 

The basic set contains seven conclusive and most probably complete 

assumptions with axiomatic character.  
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1.) Basic restrictions on the physical descriptions: The physical description of 

nature is limited onto finite domains of space and time and all physical 

systems are open systems.  

2.) One fundamental interaction field exists with unified propagation: Only one 

frame invariant fundamental interaction exists consisting of the 

electromagnetic field and the covariant gravitational field. The field 

propagation is finite, constant and has the value c in each frame, see Ref. [9]. 

This field is the Unified Field.   

3.) The elementary particles (EP): Only four types of stable point-like and 

structure-less particles exist with two Maxwell charges. These are the 

particles, e, p, P and E. 

4.) The finite and invariant c defines unique distances. The property of the 

space-time continuum: In finite space-time domains, space and time is 

homogeneous, the space is isotropic. A unique Riemann’s type metric exists 

determined uniquely by the UF in a finite domain of the (3, 1) dimensional 

space-time continuum. The unique metric between particles is given by the 

propagation constant c of the UF. The invariant infinitesimal distance ds is 

defined by  

 (ds) 2  = dx  dx  = (dx 2

1 +dx 2

2 +dx 2

3 )-(cdt) 2 .  (1) 

Additional fundamental assumptions: 

5.) There exists a separation principle for single elementary particles in very 

small and for many particle systems in very large space-time distances. 

6.) The canonical coordinates of elementary particles are principally 

undeterminable. This hypothesis is more general than Heisenberg’s 

uncertainty relation with h. 

7.) The two kinds of charges, the e-charges as well as the g-charges, have two 

signs. The amount of the e-charge, q, is the same for all particles. But the 

amount of the g-charges is only equal for e and p respectively for P and E. 

The amount of g-charge g i  is proportional to the rest mass m e  and m P  of 

an elementary particle: electron: g 1  = -gm e , positron: g 2  = +gm e , proton: 

g 3  = +gm P , elton: g 4  = -gm P . We shall use this index convention of EP 

here. The universal gravitational constant is G = g 2 /4 . 
The set of basic hypotheses leads to a New Model of nature in which few of the 

assumptions gathered over time, remain valid: only the existence of atoms, of 

elementary electric charges and of the propagation of light c. The New Model 

and the accepted Standard Model are essentially different and they give a very 

controversial explanation of nature. A crucial difference is the explanation of the 

observed gravity generated through the gravitational charges of the four EP, Ref. 

[2]. Furthermore, the Eikonal theory prohibits the existence of photons in 

microscopic reactions, Ref. [4, 5]. 

Here we want to continue the investigation of the New Model. It is not only a 

mathematically correct theory based on a few conclusive hypotheses but also the 

laws of nature are represented within it. The electromagnetic field is described 

with the known equations 

    A )(e   = + j )(e  ; A )(e   = ( )(e /c,A )(e ), (2a) 

where  

j )(e   = ( )(e ,j )(e /c)  

is used with  
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  j )(e   = 0, the continuity equation and e-charge conservation,  (2b) 

and  

  A )(e   = 0, the Lorentz gauge, the conservation of the e-field properties. (2c) 

In complete analogy to electromagnetism, the covariant gravity is described in 

terms of four-vector potential A )( g   and of four-current j )( g   in a finite space-

time domain  , according to the equations 

    A )( g   = - j )( g  ; A )( g   = ( )( g /c,A )( g ), (3a) 

where j )( g   = ( )(g ,j )( g /c)  

is used with  

  j )( g   = 0,  the continuity equation and g-charge conservation, (3b) 

and  

  A )( g  = 0, the Lorentz gauge, the conservation of the g-field properties. (3c) 

According to (2a) and (3a) all moving bodies radiate electromagnetic and 

gravitational rays. The e-field and g-field is connected with the invariant 

elementary charges of the four stable particles. The charges are defined by 

surface integrals of the static fields whereby the surface S encloses a small finite 

volume V containing only one EP. The charges of the four EP are  


S

E )(e

i .ds = + q i  with q i  = {-q, +q, +q, -q},  i = 1, 4 and (4a) 


S

E )( g

i .ds = - g i  with g i  = {-gm e ,+gm e ,+gm P , -gm P }, i = 1, 4. (4b) 

With the fixing of the signs of the elementary charges q i , g i  and the fields,  

E )(e

i    F Coulomb/q j = + q i r/(4 r 3 )  

and  

E )( g

i    F Newton /g j  = - g i r/(4 r 3 )  

and with a positive sign convention for g-charge of the proton, the relation 

g 3  =  + gm p ,  

is used. The static Coulomb force F Coulomb and Newton force F Newton  are 

equivalent with the static zero components of Eqs. (2a) and (3a). The 

gravitational field E )( g

i  is directed towards the proton with a positive g-charge. 

The stress-energy tensor of the gravitational field, F )( g  , can be expressed with 

the components of the four-vector potential A )( g   for a Lagrangian in complete 

analogy to F )(e   expressed with A )(e  . As a consequence of the two kinds of 

elementary charges of the four EP, the A )( g   and A )(e   must always be added 

in the UF Theory. Due to the weakness of the gravity, the influence of A )( g   on 

the EP can be studied only experimentally with electric neutral particle systems. 

In a finite volume V enclosed by a surface S such systems are the four basic 

two-particle systems (e,P), (p,E), (e,p) and (P,E) and we want to investigate 

mainly these four kinds of two-particle systems here. The net g-charges of these 

systems have the values  

g ),( Pe  = +g(m P -m e ),  g ),( Ep  = -g(m P -m e ),  g ),( pe  = 0 and g ),( EP  = 0.  (5) 

The corresponding gravitational masses of the first two systems are  

m g  = m P -m e .  

They are the (e,P) and (p,E) systems. The other two systems have formally 



  4 

m g  = 0.  

Because of zero gravitational mass, the bound systems (e,p) and (P,E) are 

“mass-less”. They will be identified with two kinds of basic neutrinos, the 

electron-neutrino e  = (e,p) and proton-neutrino P  = (P,E).  

The static electric force, F )(e , between two net electric charges q 1  and q 2  are 

given by Coulomb’s law. The static gravitational force, F )( g  between two net 

gravitational charges g 1  and g 2  is defined by Newton’s law. For finite relative 

distances r we have 

F )(e  = +
4

1
3

21

r

qq
r,   (6a) 

F )( g  = - 
4

1
3

21

r

gg
r  =   G

3

21

r

mm gg

r. (6b) 

In case of electron, F )(e  is about a factor ~ 3x10 42  greater than F )( g . For the 

above considered four electric neutral two-particle systems only the two systems 

(e,P) and (p,E) have a non-zero gravitational forces F )( g : 

F
)(

),(),,(

g

PePe  = F )(

),(),,(

g

EpEp  = - G
3

2)(

r

mm eP  r, (7a) 

F
)(

),(),,(

g

EpPe  =  + G
3

2)(

r

mm eP  r. (7b) 

The two mass-less neutrinos exert neither a static electric nor a static 

gravitational force to other EP. But the Newtonian force between an (e,P) and a 

(p,E) system is repulsive. In nature, two kinds of matter condensation seem to 

existing. The one that condensates only with the particles (e, p, P), this is our 

“world”. The other condensation of matter is with (e, p, E). Between bodies both 

of this type of condensed matter, a repulsive force is present. Condensation of 

matter with all four EP does not seem to exist. The dark matter is consisting of 

free flying neutrinos which can only build small particle aggregates, for instant a 

ep  = (P,e,p,E) system. Charged particles split these neutrino aggregates, among 

them the so called composite-neutrino ep  into the two basic neutrinos, see the 

decay of charged Myons. The dark matter is over all present in all experimental 

equipments. Therefore, the presence of dark matter should be taken into account 

in the interpretation of all scattering experiments at energies higher then ca. 100 

MeV.  

 

Figure 1.  A comparison of the sizes of microscopic objects with the smallest 

wave lengths of their electromagnetic radiations. The ionization by atoms means 

the ionization of the last electron. The size of the neutrinos, e  = (e,p) and p  = 

(P,E), and of the neutron, n 0  = (e,P), is calculated with h 0 . The size of the 

electron is also drawn at ~ 10 18  cm, as a limit up to which this particle is 

supposed to be point-like.  

 

According to the Eikonal theorem, this representation illustrates that the field 

quantization with photons is prohibited as used in the accepted quantum 

electrodynamics. 

Variation problems for two-particle systems in a finite space-time domain  : 

The Eikonal theory prohibits light corpuscle in each microscopic process, see 



  5 

Fig. 1. Therefore, we must use the quantization of the source of the UF instead 

of the quantization of the electromagnetic field with photons, see Ref. [3]. The 

static quantum condition for the EP in a finite volume V with  

j )(e

i

  = q i j
)(n

i

  = q i ( 
)(n

i ,j )(n

i /c),  

issues 


V

 )(n

i d 3 x = n i  = number of particles i in V, for i = 1, 4. (8) 

The four two-particle systems (e,P), (p,E), (e,p) and (P,E) are corresponding to 

the combinations (i = 1, j = 3); (i = 2, j = 4); (i = 1, j = 2) and (i = 3 and j = 4) 

whereby both particles are within the same finite volume V. From the continuity 

equations of the charges, the continuity equations and conservations of particle 

numbers follow  

  j )(n

i

  = 0    (9a) 

 0 
V

 )(n

i d 3 x = - 
V

c

1
 .j )(n

i d 3 x = - 
S

c

1
j )(n

i .ds,  for i = 1, 4. (9b) 

The change of time of particles in finite volume V is given by the negative flow 

of particles through the surface S enclosing the finite volume V.  

The action integral of the covariant Lagrange density  

L = L T - L UF ,  

expressed with A )(e  , A )( g   and with the four-currents j )(e  (x) and 

j )( g  (x), is  

I = 


(dx 4 ){L T (x)-L UF (A )(e  (x),A )( g  (x),j )(e  (x),j )( g  (x))}, (10) 

in a finite space-time domain  . The Lorentz scalar L T (x) describes 

usually the Lagrange density for the kinetic energy of particles. The j )(e   

and j )( g   can be expressed with the two kinds of charges q i  and g i  and 

with the four-current of particle numbers j )(n

i

 ,  

j )(e  =
 4,1i

q i j
)(n

i

 ,  

j )( g  =
 4,1i

g i j
)(n

i

 .  

Therefore, the Lagrange density can be represented with  

L 0  = -(F )(e

 F )(e  +F )( g

 /F )( g  )/4, 

therefore 

I = 


(dx 4 ){L T (x)-L 0 (A )(e ,A )( g )-
 4,1i

(q i A
)(e

 -g i A
)( g

 )j )(n

i

 }. (11) 

The well known variations respectively the field quantities A )(e  and A )( g  only, 

 | )(eA
I =  | )(eA 



(dx 4 ){L UF }  (12a) 

and  

 | )( gA
I =  | )( gA 



(dx 4 ){L UF }, (12b) 

give the field equations (2a) and (3a) for the electromagnetic and gravitational 

field. The field quantities A )(e  and A )( g  must fulfil the additional conditions 

Eqs. (2c), (3c). 
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Now, we want to perform a variation respective the field quantities of particles 

which are only contained in j )(n

i

  and L T (x). The term L 0  corresponds to the 

particle free part of the field. Therefore, we leave out L 0  and consider the 

following expression 

I )(n  = 


(dx 4 ){L T -
 4,1i

(q i A
)(e

 -g i A
)( g

 )j )(n

i

 }. (13) 

For the two-particle systems (e,P), (p,E), (e,p) and (P,E), we have the integral 

I )(

,

n

ji = 


(dx 4 ){L T

ji ,  -(q i A
)(e

 -g i A
)( g

 ) (j )(n

i

 -j )(n

j

 ) }, (14) 

for the variation. In case of particles, we have the conditions Eqs. (2b), (3b) and 

additional Eqs. (8), (9) for the field quantities. Now we know that the 

contribution of the gravitational field g i A
)( g  is in order of ~ 10 42  less than the 

contribution of the electromagnetic field q i A
)(e  in  . For simplicity only, we 

neglect the contribution of g i A
)( g  in  . With  

j )(

,

n

ji

  = j )(n

i

 -j )(n

j

   

the remaining covariant Lagrange function is 

I )(),(

,

ne

ji  = 


(dx 4 ){L T

ji , (x)-q i A
)(e

 (x)j )(

,

n

ji

 (x)}. (15) 

The equations from (8) to (15) describe the mathematic conditions so far. They 

are defined in a fixed but arbitrary coordinate system in a finite domain of the 

Minkowski space. But an absolute coordinate system has no relevance in physics 

and we must go over to a physical relevant relative coordinate system between 

the particles, between the sources of the UF. In the two-particle case, such a 

coordinate system leads to the relative four-vectors of particles, to  

x   = x 

i -x 

j   

and to the relative four-momentum  

p   = p 

i -p 

j .  

The “center-of-momentum” (C-O-M) system, loosely spoken the “center of 

mass” system, should be described with two other four-vectors X   and P  . The 

C-O-M system corresponds to a fixed but arbitrary outer coordinate system in 

Minkowski space. Since such an absolute coordinate system has no relevance to 

the relative motion, we choose a coordinate system with  

P   = (E*/c,0,0,0), 

 in which the “center of mass” is in rest. Hereby  

M = E*/c 2 , 
will be interpreted as the mass of composite particle. In this coordinate system 

the four-current 

j )(

,

n

ji

   (  )(

,

n

ji (x  ),j )(

,

n

ji (x  )/c)  

and L T

ji , (x  ) are functions of x  . The function  )(

,

n

ji (x ) describes the particle 

number density and j )(

,

n

ji (x ) the particle number current for the two-particle 

system with the condition that if the particle j has the four-coordinate x


j  than 

the particle i has the four-coordinate  

x   = x 

i -x


j ,  

and the particle mass is  
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m ij ’ = m i m j /(m i +m j ).  

This relativistic treatment corresponds to the reduction of the equivalent one 

body problem of classical mechanics if the interaction potential depends on the 

relative vector x and on the time derivative of x. The variation problem for 

particles requires the usage of variation functions  i  instead of densities  )(n

i  

and currents j )(n

i . The functions  i , i = 1, 4, are the field quantities of the four 

type of particles and represent the state of particle systems in a finite domain  , 

see also the 6
th

 basic assumption. We set 

 )(

,

n

ji (x  ) =  ji , *(x ) ji , (x ),  (16) 

j )(

,

n

ji (x  )) = 
i2

1

'

'

ijm

h
( ji , (x )  ji , *(x  )- ji , *(x  )  ji , (x )), (17) 

where  ji , * is the complex conjugate of the scalar function  ji , , and h’ is any 

appropriate chosen constant. Eqs. (8) and (9) with particle number conservation 

and with the boundary equation must also be fulfilled: 


V

 )(

,

n

ji d 3 x = 1, (18a) 

 0 
V

 )(

,

n

ji d 3 x = - 
V

c

1
 .j )(

,

n

ji d 3 x = - 
S

c

1
j )(

,

n

ji .ds.       (18b) 

For the kinetic part of Lagrange density, we try to set the Lorentz scalar 

expression 

L T

ji , (x  ) = c 2 h’’    ji , *(x )   ji , (x  )- m ij ’c 2  ji , *(x ) ji , (x  ), (19) 

with a second appropriate constant h’’. The chosen expressions for  )(

,

n

ji , ,j )(

,

n

ji  

and L T

ji ,  give a covariant Lagrange density which contains only  ji , *,  ji ,  and 

the first derivative of these functions and some appropriate chosen constants.  

For the action integral, Eq. (15), we have the following Lagrangian 

I )(),(

,

ne

ji  = 


(dx 4 ){c 2 h’’  ji , *(x  )  ji , (x  )-h’’
dt

d
 ji , *(x )

dt

d
 ji , (x  ) 

 -m ij ’c 2  ji , *(x  ) ji , (x  )-q i 
)(e (x ) ji , *(x ) ji , (x ) 

 + q i A
)(e (x )

i2

1

'

'

ijm

h
( ji , (x  )  ji , *(x )- ji , *(x  )  ji , (x ))}. (20) 

According to Hamilton principle, the Euler-Lagrange equations for the functions 

 ji ,  are 

h’’
2

2

dt

d
 ji , (x  )+m ij ’c 2  ji , (x )+ h’’c 2   ji , (x )+q i 

)(e (x ) ji , (x  ) 

+q i A
)(e (x  )

i

1

'

'

ijm

h
  ji , (x ) = 0 for i, j = 1, 4 (21) 

and the complex conjugate equation for  ji , *. In this relativistic covariant 

equation of motion, the second time derivative of  ji ,  and the magnetic field 

A )(e  appears. To get a static equation, we may set  

 ji , (x  ) =  ji , (x) exp(-iE’t 2 /h),  

with some constant h and obtain 
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(m ij ’c 2 -(2 /h) 2 E’ 2 h’’) ji , (x)+ h’’c 2   ji , (x)+q i 
)(e (x ) ji , (x)  

+q i A
)(e (x  )

i

1

'

'

ijm

h
  ji , (x) = 0. (22) 

If we compare this equation with the non-relativistic stationary equation for the 

H atom, set up by Erwin Schrödinger in 1926, we must omit the term with the 

vector potential A )(e  whereby h’ can not be determined. Furthermore, we have 

to set 

h/2 =  ,  h’’ = 2 /(2m ij ’c 2 ),  -E =  m ij ’c 2 (1-(E’/m ij ’c 2 ) 2 /2), (23) 

with h = Planck’s constant. Then, we formally get the stationary Schrödinger 

equation,  

-E ji , (x)+
'2

2

ijm


  ji , (x)+q i 

)(e (x ) ji , (x) = 0, (24) 

with eigenvalues E k <0 in which E k  was interpreted as the non relativistic 

energies of the H atom. In this non-relativistic stationary approach the vector 

potential A )(e  is omitted, and for the eigenvalues E k , no radiation is caused by  

)(

;,

e

kji (x,t) = q i  kji ;, *(x,t) kji ;, (x,t),  

because )(

;,

e

kji (x,t) does not depend on the time.  

Furthermore, we have to notice the mass of the composite particle M. Since 

P  P   = E* 2 /c 2  = M 2 c 2  (25) 

is considered as an invariant, M must be a constant in each frame. But 

experimentally a mass defect M is observed for composite particles. The 

inertial mass is less than the gravitational mass, and the difference corresponds 

to the binding energy of the system, see Ref. [6]. The energy-mass equivalence 

relation  

E = m i c 2   

is valid only for an inertial mass. The gravitational mass m g  is unchangeable. 

There is a fundamental difference between an inertial mass and a gravitational 

mass and the accepted base in physics on the usage of mass must be revised. The 

inertial mass of composite particle systems M is an inappropriate quantity in 

order to use it in particle processes.  

The mathematical problem of the source quantization of the UF in a finite 

volume V is to seek a solution  ij  on the isoperimetric subsidiary and natural 

boundary conditions 


V

 )(

,

n

ji (x)d 3 x = 
V

 ij *(x) ij (x)d 3 x = 1, (26a) 

 0 
V

 )(

,

n

ji d 3 x = - 
S

c

1
j )(

,

n

ji .ds.   (26b) 

Schrödinger has used an infinite integral in Eq. (26a) and the quantization of the 

energy followed for quantum mechanics. In the UF Theory we are dealing with 

open systems in a finite volume, and the eigenvalues E k  are not a priori energy 

eigenvalues. 

In the static case, the type of variation problems with the conditions Eq. (26a) 

and  
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
S

c

1
j )(

,

n

ji .ds = 0  

which lead to a differential equation (22) has the general form  

I( *, ) = 
V

d 3 x{h”(  *(x)  (x)+V(r) *(x) (x)  

 +h’f(A(x))( (x) * (x)- *(x)  (x))},  r 2  = x 2 . (27) 

with a given scalar function V(r) and a vector function f(A(x)) and with two 

constants h’ and h”. However, the two constants are connected to each other,  

h” = -h’ 2 ,  
if a natural boundary condition on the surface S of the enclosed volume V exists, 

or alternatively, if the variation problem does not depend on the surface S. Such 

variation problems were investigated by the author in Refs. [4]. The numerical 

technique was taken over by V. Marigliano Ramaglia and G. P. Zucchelli in Ref. 

[8] with considerable success. 

Now, we turn to the physics of the radiation process. We suppose that a steady 

ground state of an H atom exists without radiation before the excitation. The 

assumption of a steady ground state corresponds to physical experiences and is 

not a “strong condition” on the physical system because an H atom never 

appears completely isolated from the rest of the world. The steady ground state 

corresponds to the lowest eigenvalues E 1  of Eq. (24) which is simultaneously 

the ionization energy  

E ionization = -E 1 .  

The numeric value of Planck’s constant h is given by the known relation 

h  = q 2 /2c x (m’c 2 /2E ionization) 2/1  = q 2 /2c f , (28) 

f = fine structure constant, with  

E ionisation = 13.59 eV , 

and with  

m’ = m e m P /(m e +m P ),  

of the H atom. In Eq. (28) an expression is used which allows a simple 

generalization to the relativistic case. 

After the excitation t>t 0 , the H atom system goes over to an excited state. The 

excited state is expressed as a superposition of solution of Eq. (24) with different 

eigenvalues 

 ji , (x,t) =
k

a k  kji ;, (x,t)=
k

a k  kji ;, (x) exp{-iE k (t-t 0 )/ }. (29) 

The time dependent electric charge density in finite volume V is than given by  
)(

,

e

ji (x,t) = q i  ji , *(x,t) ji , (x,t) = 

 q i 
lk ,

a l *a k  lji ;, *(x) kji ;, (x)exp{-i(E k -E l )(t-t 0 )/ }. (30) 

The electric charge density 
)(

,

e

ji (x,t) oscillates with the frequencies  

kl  = (E k -E l )/h  

and radiates electromagnetic field with these kl  in a finite space-time domain 

 . The observed decay time of exited states of atom is  ~10 8  s. Therefore, 

the appearance of spectral lines with wave lengths  

 kl  = c kl   
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can only be observed in a moving finite space-time domain within a spherical 

sector  r e ~c  = 3m after the excitation t-t 0  >  . 

Fig. 1 shows that in accordance with the Eikonal theory the existence of photons 

is prohibited in all microscopic processes. In the New Model the emission 

process is connected to the source quantization of the UF without photons. 

Therefore, the quantization of the electromagnetic field with photons is not 

necessary and the usage of the classical field theory for electromagnetism is also 

allowed in atomic and nuclear physics. Furthermore, in the stationary Eq. (24) 

the contribution of the magnetic field A )(e  to the eigenvalues E i  is omitted. If 

this contribution is also considered in the eigenvalues problem, a splitting of 

spectral lines will appear. Conclusively, the observed multiple structure of 

spectral lines arises as a consequence of the presence of the magnetic field and 

not because the elementary particles have an intrinsic angular momentum (spin 

1/2). The observed electromagnetic radiation in microscopic processes is 

connected with the source quantization of the UF with point-like and structure-

less source particles having two kinds of Maxwell charges, see Refs. [3, 5].  

In case of the electron-neutrino e  = (e,p) we have the reduced mass  

m’ = m e /2 , 

and the ionisation energy is  

E ionization = 2m e c 2 .  

The Eq. (28) defines a second basic constant  

h 0  = q 2 /2c x (m’c 2 /2E ionization) 2/1  = q 2 /4c 2 ,  (31) 

and   

h = 387.7xh 0 .  

The same constant h 0  arises for the proton-neutrino P  = (P,E) because the 

mass m p  is removing in Eq. (31) in course of the reduced mass  

m’ = m p /2  

and the ionisation energy  

E ionization = 2m p c 2 .  

The constant h 0  determines also the size of the neutrinos,  

r = h 0 2 /( e 2 m’). 

Since e  is responsible for the nuclear forces, h 0  determines with  

r
e
 = 7.03x10 14  cm , 

also the size of the nuclei. On the other hand is  

r
P
 = 3.83x10 17  cm. 

The general variation of  

I(A )(e ,A )( g , i *, i )= 




(dx 4 ){L T -L 0 -
 4.1i

(q i A
)(e

 -g i A
)( g

 )j )(n

i

 ( i *, i )}, (32) 

where L T (x  ) and j )(n

i

 (x  ) is suitable expressed with the functions  i  and 

 i *, I = 1, 4, and with a isoperimetric subsidiary conditions in a finite domain 

  

G( i *, i ) = 
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


(dx 4 )G( i *(x
 ), ,i *(x  ) i (x

 ), ,i (x  ),x  ) = const, (33) 

define Lagrange multipliers  , see e.g. in book of M. Giaquinta, S. Hildebrandt, 

Ref. [7], Chapter 1. For the integrand in Eq. (33) we have to set 

G( i *(x
 ), ,i *(x  ) i (x

 ), ,i (x  ),x  ) =   j )(n

i

 , (34a) 

and Eq. (33) is equivalent to 


V

 )(n

i (x,t)d 3 x- 
V

 )(n

i (x,t 0 )d 3 x + 


(dx 4 ) .j )(n

i  = 0 for i = 1, 4. (34b) 

The Hamilton principle reads then 

 I = 


(dx 4 ) {L} =  | )(eA 


(dx 4 ) {L} +  | )( gA 


(dx 4 ) {L} 

 +
 4.1i

 | *i 


(dx 4 ) {L}+
 4.1i

 |
i 


(dx 4 ) {L}, (35) 

where dx 4  is the invariant volume element, A )(e   are the field quantities 

describing the electromagnetic field, A )( g   the gravitational field and  i ,  i * 

the four kinds of elementary particles. The integration is to be performed in a 

finite space-time domain  . The quantum condition within the New Model, the 

source quantization, leads to isoperimetric subsidiary conditions generally 

written as the Eq. (33). The isoperimetric problem with natural boundary 

conditions, Eq. (34), is mathematically well defined and leads to Lagrange 

multipliers   within the calculus of variation and the Lagrange formalism. The 

Lagrange multipliers  , Ref. [7], 

 I(A, i *, i ; q )+ 
 4.1i

( | *i
+ |

i
)G( i *, i ; q ) = 0, for all and q , (36) 

are eigenvalues of an open physical system in a finite domain  . In this context 

we connect the two constants h 0  and Planck’s constant h with Lagrange 

multipliers. But it has to be mentioned that j )(n

i  may be expressed with the same 

functions  i ,  i * as  )(n

i  if and only if Eq. (34b) is valid for definite numbers 

of particles N i  in a finite domain V at t=t 0  and no particles penetrate through 

the surface of V during a finite time interval. 

Variation problems, defined by Eqs. (32), (34) and (36), build only a subclass of 

a great manifold of variation principles which occur in nature. A second class of 

variation principles arises if instead of a natural boundary conditions, Eq. (34b), 

a steady current of some types of particles is flowing across the surface  , 

containing within   a definite number of the other kinds of elementary 

particles. In this case Eqs. (34b) remain valid only for the latter particles. For 

instance, if the number of protons is only holding constant within   and a flow 

of e  = (e,p) is allowed, the problems of nuclei arise.  

If the conditions of Eq. (34b) are valid for all four kinds of particles within  , 

the steady currents flowing through   can only be the electromagnetic and the 

gravitational field. In case of laser, an electromagnetic wave with a definite 

frequency has to be considered flowing through the surface   and within   

there are the three types of particles e, p, P in a bound state.  

Another specific problem is given at the equilibrium of bound systems of the 

three types of particles (e, p, P) with the electromagnetic field residing outside 

the surface at a temperature T. This equilibrium problem at given temperature 
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contains also statistics and corresponds to the black body radiation, where the 

constant h was found by Max Planck in 1900. 

The source quantization of the UF with Eqs. (33)-(36) has also far reaching 

consequences for the context of interactions, because the creation and 

annihilation of the four EP with invariant properties is prohibited, as investigated 

by Szász in Refs. [3, 5]. The numbers of e, p, P and E are conserved in each 

frame and the electric charge and the gravitational mass do not change. The 

energy-mass-equivalence relation  

E = m i c 2 ,  

is only valid for the inertial mass. The four EP are stable particles as observed in 

nature. A creation and annihilation of these four particles cannot arise in the 

context of the Unified Field Theory. 

For instance, the spontaneous beta decay of a nuclei, the emission of an electron 

or a positron with an additional electron-neutrino e  = (e,p), has to be understood 

as an unstable state of nuclei within variation principles of the New Model. The 

beta decay corresponds to the so called weak interaction within the accepted 

Standard Model.  

The observed unstable particles appear as temporary condensation of the 

neutrinos e , p and ep  on elementary particle systems. The temporary 

condensation with a participation of more than one proton-neutrino p  produces 

the so called strong interaction of particles, Ref. [3]. Consequently, there is no 

need for the introduction of any additional fundamental microscopic interactions 

within the New Model. 

The four stable particles are the sources = quanta of UF, according to 2
nd

 and 3
rd

 

basic hypotheses, and the Unified Field is the only interacting field, other 

particles than e, p, P, and E do not exist in nature. Therefore there is no need for 

an introduction of any other fundamental particles than the four elementary 

particles. Thus, there is no need for the introduction of quarks, of pre-quarks and 

of strings or anything else as fundamental particles for explanation of physics for 

r > 10 18  cm. 

A milestone of the UF Theory is the experimental verification of  

E = (m g -m i )c 2 >0,  
in composition dependent free fall by the author in Ref. [6]. The value 

distribution of elementary charges according to the 7 th  basic assumption and the 

equivalence of the velocity of light c and of gravity c g  = c is axiomatically 

assumed. A next step of further simplification in basic physics could be an 

understanding of the UF without the separation  

A = A )(e  +A )( g    

with two different kinds of charges, then this is in a certain sense artificial. But 

at the moment, we are busy with the development of predictions of the New 

Model in comparison with them of the accepted Standard Model. At first, the 

Lagrange formalism of open systems in a finite space-time domain   has to be 

investigated in order to understand the connection of the basic constant h 0  and 

Planck’s constant h to different Lagrange multipliers  . 

 

Acknowledgement: I would like to thank Julian Szász for his support in 

preparation of this paper. 

 



  13 

References 

[1] Gy. I. Szász, The Orbits of Planets Violate the UFF, (2003). 

[2] Gy. I. Szász, The Non-Equivalency of the Inertial and Gravitational Mass 

within a Theory of Gravitational Charges, (2002). 

[3] Gy. I. Szász, A Model of the Unified Field and of the Neutrinos, (2003). 

[4] Gy. I. Szász, Emission of Radiation by Atoms without the Energy Quantum 

Hypothesis, (2002),  

  see also earlier investigations, Phys. Lett. 55A, 327 (1976) and 62A 313 

(1977), Z. Physik, A275, 403 (1975) and A278, 165 (1976), Fortschr. d. 

Physik, 24, 405 (1976). 

[5] Gy. I. Szász, Principles of Physics, (2003). 

[6] Gy. I. Szász, Measurement of UFF Violation with Li/C/Pb Compared to Al, 

(2004), 

[7] M. Giaquinta, S. Hildebrandt, Calculus of Variations I, The Lagrangian 

Formalism, (Springer, Berlin-Heidelberg-New York, 1996) The relation 

between conservation laws and symmetry of the Lagrangian is called the 

Noether’s theorem. A formal proof is given e.g. in Section 13.7 of H. 

Goldstein, Ch. Poole, J. Safko, Classical Mechanics, Third edition, 

(Addison Wesley, San Francisco, 2002). 

[8] V. Marigliano Ramaglia, G. P. Zucchelli, Phys. Lett. 67A, 9 (1978). 

[9[ S. M. Kopeikin, E. B. Fomalont, arXiv: gr-qc/0212121v1. The measurement 

of the velocity of gravity is presented on the Meeting of the AAS, Seattle (8. 

January 2003), see also Astrophys. J. 598, 704 (2003), gr-qc/0310059, and 

S. M. Kopeikin CQG, 21, 3251 (2004). 


