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1.  Emission of Radiation by Atoms without the Energy 

 Quantum Hypothesis 

Abstract: The discrete emission spectrum of the hydrogen atom is described 

within a new variation principle of an open physical system in a finite rage of 

space. Since the electromagnetic field is a non-conservative field the discrete 

spectra of atoms does not correspond to a quantization of the energy of the 

particle system and to the quantization of the electromagnetic field with photons. 

The difference compared with the Schrödinger eigenvalue problem will be 

considered. The excited atom is, within the Lagrange theory, only a part of the 

complete system and appears as “resonator” with discrete frequencies  ij . The 

oscillated charge density of the atom radiates classically electromagnetic waves 

with the wavelengths  ij =c/ ij  and creates the discrete spectra in a finite space-

time region. The wave nature of radiation dominates in the atomic emission 

processes because the wavelengths of the emitted rays are much greater than the 

sizes of the objects. The “light quantum hypothesis” of quantum mechanics is in 

our theory replaced with a new variation principle. Furthermore, as the variation 

principle describes not only bound states but also decaying ones of a system, we 

can e.g. consider the stable and the unstable particles in a unified way. 

PACS numbers: 04.40.Nr, 31.10.+z, 31.15.-p, 32.80.-t 

Properties of the H Atom and its Spectra 

The experimental observations with the hydrogen atom, on which our theory is 

based, are summarized first. The diameter of the hydrogen atom (H atom) is 

approximately 1 Å (=10 8  cm = Ångström). Depending on the physical 
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conditions of the environment of the excited H atom, one sees a finite number of 

N spectral lines. The number N of spectral lines becomes smaller if the excited H 

atoms are in dense gas; N becomes larger if the distance of the H atoms to the 

surrounding molecules is larger in the universe for instance. The wavelength of 

the observed emission is several thousand Å. The observed cut-off wavelength of 

the Lyman series is  1  = 927 Å. For the Balmer, Paschen and Brackett series the 

cut-off wavelengths are  2  = 3702 Å,  3  =  8340 Å and  4  = 14870 Å, 

respectively. The cut-off wavelength of the Lyman series  1  is the smallest 

wavelength which plays a role in the emission or absorption of radiation by the 

hydrogen atom. However, the spatial extension of the H atom is roughly a 

thousand times smaller than the smallest wavelength of the emitted and/or 

absorbed radiation. The wavelength is thus not small in comparison with the size 

of the hydrogen atom (range of the medium). In this case we can not define the 

Eikonal equation of wave, where the wavelength should be small compared to 

the dimension of any change in the medium. Therefore a comparison of the 

Eikonal equation of the geometrical optics of the light (wave nature) with the 

mechanical Hamilton-Jacobi equation (corpuscular nature) for the principal 

function W (see Ref. [1], chapter IX) is not permitted. As the Eikonal theorem 

applies to the electromagnetic field too, we expect, in the case of the radiation 

process of the hydrogen atom that the wave character of the electromagnetic field 

dominates and the corpuscular nature can be neglected. Regarding this situation, 

from the duality of light – the Newton’s light particle theory is equivalent to the 

Huygens’s wave theory of light in the limit of geometrical optics (Hamilton, 

1834) – we will decide in our theory against light particles against the photon 

hypothesis and favour the wave theory. We will describe the non-conservative 

electromagnetic fields classically with the Lagrange function of the system, L, 

i.e. we will describe the electric field E and the magnetic field B by a scalar 

potential  and a vector potential A.  
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As a complement to the emission quantities of the excited H atom, we may 

mention the exponential behaviour of the intensity of emitted radiation through 

the radiating atom. The radiation time is in the range of 10 8  sec. The length of 

the coherent wave train is also measured in meters.  

After these considerations, we can state that for a second analysis in the 

"quantum chemistry", the usage of the classic electromagnetic fields is 

appropriate for all atoms and molecules. In order to explain radiation phenomena 

and chemical reactions the conditions are similar to for the hydrogen atom. Then, 

in the most extreme case of atoms with Z = 100 nucleus charge, the diameter of 

the (Z-1) times ionized atom ground state is approximately 10 2  Å and the cut-

off wavelength of radiation is  1  = 10 1  Å. Thus, also in this case, we are not in 

the limit of geometrical optics and the wave nature of radiation dominates. This 

means that the validity of classical electrodynamics has to be extended to all 

atomic systems without consideration whether the atomic systems, the electrons, 

is treated as a non-relativistic or as a relativistic system.  

In order to describe the Lagrangian of the atomic systems we turn to the terms 

describing the charged particles and the interaction of an electromagnetic field 

with charged particles. At first we need the wave function of the latter. 

The Electron Wave 

First, the electron will be examined. Considering the arguments above regarding 

the form of the wave equation for particles, for which the mechanical Hamilton-

Jacobi equations represent the limiting case of short wavelengths, a 

proportionality of the particle energy E and the wave frequency  must exist, see 



4 

Ref. [1], Chapter IX. This proportionality constant h is the famous Planck’s 

constant, Ref. [2]  

E = h . (1) 

However, this equation is by no means a quantization of the energy. As the 

relation between the wavelength of the particle  and the frequency is set to be 

 = u, where u is the wave velocity of the "material wave“, the equation 

 = u /  = (E / p) / (E / h), 

gives the relationship between  and p. Therefore the amount of the momentum 

of the particle and  holds 

 = h / p. (2) 

The wave velocity of the "material wave“ u for a particle system is identical to 

the wave velocity of the S areas, where S is the Hamilton action function, and the 

following applies. This is essential at least for non-relativistic particles. In the 

relativistic case of particles the relations Eqs. (1) and (2) should be re-

investigated carefully, 

u =   E / )(2 VEm    = E / mT2   = E / p, 

whereby V is the potential and T the kinetic energy of the particle. This is used 

to derive Eq. (2).  

Furthermore, in analogy to the time-independent wave equation of optics  

²   + (4 ²) / ²  = 0, 
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there must be a quantity  for the particle waves, corresponding to the wave 

amplitude   of the optics. It must satisfy the equation with the wavelength  

 = h / p = h / )(2 VEm  . (2‘) 

Consequently, the time-independent wave equation of mechanics, for which the 

principal function W represents the Eikonal, must be  

²  + (8 ² m) / h² (E – V)  = 0. 

 (3‘) 

In Eq. (3‘) we recognize the time-independent Schrödinger equation in Ref. [3] 

for the electron wave function defined by de Broglie in Ref. [4]. We have 

recalled the Eqs. (1) – (3‘) here for the purpose of embedding the Planck’s 

constant into the Lagrange formalism. We can do it as follows: h applies only to 

the wave functions of the particles in the Lagrange formalism for continuous 

systems and not also for the electromagnetic field. 

At this stage we can not decide if the introduction of the classical fields for the 

electromagnetic interaction in the Lagrange function is justified for all physical 

systems. But also in the case of nuclei the situation seems to be similar to the 

case of atomic systems because the size of nuclei ( 10 13  cm) hundred times 

smaller as the characteristic wavelengths of   - decays 10 11  cm.  

At very high energies and at very small length scales in material medium. (E.g. 

for the quarks, but what are quarks and what is their size?) the radiation particles 

(photons) could play a role in the elementary processes, but a new consideration 

must then be given to Eqs. (1) and (2). The proportionality factor between energy 

and frequency of the photons does not have to be the Planck’s constant a priori. 

In this case we will go into the opposite direction: from the wave property of the 
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electromagnetic field to the corpuscular nature of radiation. That is, we would 

use the geometrical optics approach with a photon picture. In the very small 

length scales of quarks the question would be arise whether fundamental 

physical processes produce the photons at those very high energies?  

After these initial considerations on the electromagnetic field and on particle 

wave functions, we turn now to the Lagrange formalism which will be used for 

continuous systems and fields, see Ref. [1]. Our non-relativistic system of 

material consists of an electron and a proton, which interacts with the classical 

electromagnetic field. As mentioned above, the Planck’s constant h should only 

be included in the wave function of particles  in the Lagrange function, that is 

we have forgone the fundamental photon hypothesis of Einstein, Ref. [13] in our 

theory. 

The construction of Lagrange functions L for those continuous systems is subject 

to strict rules. The generalized coordinates of the fields (here , A, and ‘s) are 

included in the theory via the Lagrange density and possible terms can only 

contain the first derivatives according to space and time of the generalized 

coordinates. In addition, the construction of L must fulfil conditions of 

invariance. 

We have chosen the Lagrangian of the system because it is more general as the 

Hamiltonian.  

The Lagrangian of the Hydrogen Atom and of the Electromagnetic Field 

In setting up the Lagrange function of our system we ignore the magnetic 

momentum of the proton and the electron. Likewise, we do without the effects 

which would arise from relativistic treatment. These influences will be followed 

up in later publications. In the present approximation only the Coulomb field 
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(two body central potential problem) is left for the interaction between proton 

and electron and the movement of the mass centre  R  can be separated in the 

Lagrange function. This leaves an equivalent one body problem for the relative 

motion r of the electron in the Coulomb field of the proton with the reduced 

mass  

  = (m P  m e ) / (m P  + m e ).  

The movement of the mass center can be considered as constant. As the mass of 

the proton m P  is larger by around the factor 1836 than the mass of the electron 

m e  and therefore, following Eq. (2‘), the wavelength of the proton  P  against 

 e  is small at the same energy, we treat the proton only as a point particle and 

limit ourselves to the wave function of the electron and the electromagnetic field 

in the Lagrange function. The large value of m P  allows identifying R with the 

location of the proton in good approximation. The fields in the Lagrangian are 

therefore described in a special inertial system which moves with the centre of 

mass and the local coordinates are r = (x,y,z). 

To obtain simpler expressions, we will also give the energy in units of h² / 

(8²  ), i.e. we will divide the Lagrange function and the Lagrange density L by 

this factor. The time-independent Schrödinger equation is in this "energy unit" 

² + (E – V)  = 0. (3) 

We use the wave function of the electron  to formulate the Lagrange function 

of the electron moving in the Coulomb field of the proton. The electromagnetic 

field is described by the scalar potential  

V  = - q  ,  
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where q is the electron charge and by the vector potential A. As it is described in 

Ref. [1], about continuous systems and fields, the Lagrange function can be put 

together additively from several terms. These additive parts of the Lagrange 

function consist of volume integrals via the Lagrange density L. The L itself 

consists of the kinetic energy of the electron L T , of the part that stands for the 

interaction between the charged particle and the electromagnetic field L i , of the 

part of the electromagnetic field itself without charge and electrical current L em  

and of a part L d  which is required to derive the dynamic equation of  and 

contains the time derivative d/dt.  

The complete Lagrange density for the Lagrange function is 

L = L T   +  L i   + L em   + L d . (4) 

We choose the Lagrange density for L T , so as Schrödinger has chosen  

L T  = *  . (5) 

Since the electron carries only a charge – q, the Lagrange density for L i  is 

L i  = - q  * + j . A/ c =   V * + j . A/ c,   (6) 

whereby the current density j is produced from  

 j = i q / 2 m (*.  - * .). (6‘)  

 The Lagrange density for L em  is 

L em  = (E² - B²) / 8 .  (7) 

We remember that the electromagnetic fields (E, B,  and A) should also be 

included in our "energy units". 
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About the construction of L d  it can be said so far that taking the approach 

L d  = i 4  m / h (* d/dt - d*dt ),  (8) 

the time-dependent dynamic equation for the generalized coordinates * and  

is generated if one leaves out the current density dependent part of L i . This 

arises in the context of functional derivatives of the Lagrange density L with 

respect to the generalized coordinates * and , through the Lagrange equations. 

However, the dynamic equation of the electron is of no relevance in this paper. 

The Maxwell equations arise from the variation of L according to the generalized 

coordinates  and A. 

We can write the Lagrange function of the system as a volume integral via the 

Lagrange density L 

L =   { * .  + V * +  L rem  } dV,  (9) 

in which all remaining terms not listed explicitly in Gl (9) are included in L rem . 

The fields appearing in the Lagrange density are functions of the local 

coordinates r = (x, y, z) and the time t. 

Now let us turn to the integral  

I =   { * .  + V * } dV, (10) 

and split the integral to be carried out over the entire space into an integral I 1  

with r   D and the remainder for r > D. 

We would like to put forward a new variation principle in respect of the first 

integral I1 in a spherical volume with the finite radius D and at a fixed time t. 
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The New Variation Principle and Eigenvalue Problem 

The new variation principle will be formulated as:  

The functions * and  are being sought which produce an extreme value for the 

two integrals I 1  and I 2 . They will be integrated in a spherical volume with a 

finite radius D, namely 

 I 1  = 
Dr

{ *   + V * } dV,     extreme value, (11) 

and 

I 2  =   
Dr

  { * } dV,                        extreme value, (12) 

The subsidiary condition is that the integral over *  on the spherical surface is 

a constant which is not 0. During the variation procedure we also want to permit 

the variation at the integration border, i.e. at the instead r = D 

  I i  =  I i  (*+ *,*+ *,D+  D), (13) 

for i = 1 and 2. The functions * and   should to be treated as independent 

quantities.  

As earlier researched by Szász in Refs. [5], [6] and [7] have shown, such a 

variation principle leads to an eigenvalue problem with two eigenvalue 

parameters  and . If I 1  and I 2  have an extreme value then the linear 

combination I 1  +  I 2  has also an extreme value. The second parameter occurs 

the by reason of the subsidiary condition. Because of the permitted variation at 

the integration borders, the relation  
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 =  - ², (14) 

must be between the two eigenvalues. The accompanying differential equation is 

² + ( – V)   =  0,                 for r    D, (15) 

and for the stationary functions  there is a "natural boundary” condition for a 

large D  

‘ – i    =  0,                          for r  =  D (16) 

The stationary function * fulfils the complex conjugate of Eqs. (14) – (16). 

The derivative of  in Eq. (16) is  

‘ =  n .  ,   

the derivative in direction of the normal n on the spherical surface. Expressed in 

spherical coordinates (r,   and  ) and with the product Ansatz  

(r)  =  u(r) Y(  , ) ,  

this means  

u‘(r)  = 1/r d(r u(r))/dr  

for the radial part u(r).  

The variation principle has to be taken for a fixed time t. This variation principle 

must not be mistaken for the variation of the Lagrange function according to 

generalized coordinates.  
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The numerical calculations in Refs. [8] and [9] show that the variation principle 

can be used explicitly to describe bound states and "decaying states" of a system. 

So we are able to calculate the stationary functions and the discrete eigenvalues 

of the parameters  and , E i  and k i . The eigenvalues, E i , are for bound state 

negative, with Re k i = 0 and Im k i  > 0, and for decaying states they are complex 

with a positive real part of k i  (Re k i  > 0) and negative imaginary part of k i  (Im 

k i  < 0). The variation principle produces a none expected new relation between 

the Lagrange theory and poles of the scattering matrix. 

Historically, this variation principle originated from the need to describe the 

quantum mechanical “unstable state” in a systematic manner. The search for a 

consistent description of unstable systems was also considered necessary when 

the SU3 symmetry in the strong interaction of the “elementary” particles was 

examined by Szász in Ref. [10]. During relations between mass and life times of 

extremely short-lived elementary particles could be derived, the comparison with 

experimental data was unsatisfactory. The properties of unstable “elementary” 

particles were taken painstakingly from the resonances of the scattering cross 

sections. Hereby, the criterion what determines the "resonances" was not 

specified precisely. It was impossible to answer the question as to the nature of 

“unstable states” within quantum theories. Therefore, we had to return to quite 

fundamental things observation of which left its mark on modern physics in the 

last century. On the other hand, in the last 30 years the success of the SU3 

symmetry led to the quark theory of “elementary” particles. 

The question now arising is have we understood the fundamental processes 

described in "quantum physics" correctly? Or is there something that distorts our 

view of the basic processes? Is the quantization of energy really needed? Or is it 

a working hypothesis, until we have a better understanding of the elementary 

processes? Are the fundamental difficulties in quantum field theories (i.e. in 
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quantum electrodynamics) not a hint to strive for a deeper understanding? Is the 

fundamental hypothesis of the quantum theory, i.e. the “quantum hypothesis” of 

photons with discrete energy, really needed in order to describe the physical 

phenomena? What did really happen in the fundamental physical experiments on 

atomic systems at the beginning of the last century? 

Comparison with the Schrödinger Variation 

We look at this question and put our variation principle in relation to the 

Schrödinger variation calculation in Ref. [3]. There the integrals (11) and (12) 

are considered over infinity (D = ), whereby the extreme value (11) is sought 

on the subsidiary condition that the integral (12) is constant. This leads to an 

eigenvalue problem with only one parameter E, which is interpreted as energy. 

The differential equation (15) applies here to all r. The boundary condition Eq. 

(16) is also met by all the stationary solutions of the Schrödinger equation in the 

limit D  . This condition corresponds to the boundary condition for a 

“outgoing wave”. Discrete eigenvalues of the Schrödinger eigenvalue problem 

exists only for negative values E i  (energy eigenvalues), i.e. the k i  are purely 

imaginary with a positive imaginary part  

Imk i    =  i iE . 

It can bee concluded that the first N stationary solutions of the Schrödinger 

equation, which energetically are the lowest ones, are also in good 

approximation a solutions of our variation principle if we choose a sufficiently 

large D. The numerical calculations by Ramaglia and Zucchelli in Ref. [9] seem 

to confirm this. A measure of the deviation of the eigenvalues in both methods 
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E  = E i  – E i  is an integral of r, from D to , over the far-reaching Coulomb 

potential, multiplied by an exponential function exp(-2 Imk i   r).  

We can thus also take the well known first N wave functions and the eigenvalues 

of the Schrödinger equation approximately as stationary solutions of our 

variation principle too, but we cannot interpret the eigenvalues E i   a priori as 

energies. 

The numerical calculations by Ramaglia and Zucchelli in Ref. [9] show a 

peculiarity of the new variation principle: With far-reaching potentials there is, 

depending on the choice of D, a varying number of stationary solutions. That is 

exactly what is observed with the hydrogen atoms in gases at various densities. 

However, the stationary solutions for the first N eigenvalues seem practically do 

not depend on the choice of D, provided D is sufficiently large. This property of 

the stationary solution of the variation principles and the corresponding 

eigenvalue problem should be treated very careful mathematically. The 

mathematician would be asked for help to clearing this problem: There are 

existence theorems needed for stationary solutions by general interactions. In the 

case of numerical calculations, there are convergence criterions relevant. 

Approaches to other well known eigenvalue problems, as the Schrödinger one, 

are also very useful at least for N stationary solutions.  

The Excitation of the Hydrogen Atom 

Stationary solutions of Eqs. (11) – (13) should give the time dependence of the 

corresponding stationary functions in the conventional units for energy 

 
iE  (r,t)  = 

iE  (r) . exp( -i E i t 2/h). (17) 
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This would result in a charge density that is constant in time. The time-

independence of the charge density holds only in the ground state of the H atom, 

however. The ground state corresponds with the lowest eigenvalue E 1 , of Eq. 

(15). In this case we can image that the interaction of the H atom with an 

external electromagnetic field is absent in the whole space. The term L rem  in Eq. 

(9) can than be completely ignored and we can also use the limit D  . The 

hydrogen atom does not radiate in its ground state 
1E  because the location 

probability of the electron 

 (r,t) = *
1E (r,t) . 

1E (r,t)  

is time independent 

*
1E (r,t) . 

1E (r,t) = *
1E (r) . 

1E (r), (18) 

and E 1  can indeed be considered as the energy of the ground state. 

If the H atom is excited by an excitation wave package, schematically shown in 

Fig. 1, the atom changes to the excitation state 

  (r,t) = i
 a i  

iE  (r,t), 

 (19) 

which reflects a superposition of N stationary functions of different E i , with that 

of E 1 . The summation has to be performed over a finite number of 

eigenfunctions. We neglect the degeneration of eigenvalues E i  and use Eq. (19) 

for simplicity.  

The charge density of the electron in the excited state is  

- q  (r,t) =  - q k i
 a* k  *

kE  (r,t) . a i  
iE  (r,t) 
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    =  - q k i
 a* k  a i  *

kE  (r) 
iE  (r) exp( -i (E i  – E k ) t 2/h), (20) 

because of Eq. (17). This gives an oscillating charge density of a “resonator” 

with the frequencies 

  ki  = (E k  - E i  ) 2  / h, (21) 

which sends out electromagnetic waves with these frequencies, according to the 

Maxwell equations.  

Fig. 1. The figure shows schematically the hydrogen atom excitation process 

before (t < 0), during  (t = 0) and after  (t > 0) the excitation where  (r) is the 

electron location probability and A(r) is the amplitude of the classic 

electromagnetic field. After the excitation, the charge density q  (r,t)  of the 

excited H atom oscillates and emits waves with discrete frequencies  ki  on the 

rear flank (in a finite space-time region) of the excitation wave package. In this 

space region marked with     the exponential behaviour of emitted wave appears 

and in this region the limited radius D of the variation principle should be 

selected. 

The time evolution of the excitation is shown schematically in Fig.1. This Figure 

shows that the spectral lines  

 ki  = c /  ki ,  

can only be observed on the rear flank (in a finite space region) of the excitation 

wave package. The intensity of the radiation decreases exponentially in this area 

and the H atom returns progressively to its ground state because of radiation 

losses.  
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Fig. 1. The figure shows schematically the hydrogen atom excitation process 

before (t < 0), during  (t = 0) and after  (t > 0) the excitation where  (r) is the 

electron location probability and A(r) is the amplitude of the classic 

electromagnetic field. After the excitation, the charge density q  (r,t)  of the 

excited H atom oscillates and emits waves with discrete frequencies  ki  on the 

rear flank (in a finite space-time region) of the excitation wave package. In this 

space region marked with     the exponential behaviour of emitted wave 

appears and in this region the limited radius D of the variation principle should 

be selected. 

The H atom behaves like a "resonator" with discrete frequencies. Going from its 

ground state, the H atom can continuously absorb energy from the 

electromagnetic field during the excitation, depending on the offered excitation 

spectrum. After the excitation, due to radiation losses, the energy of the electron 

decreases continuously. However, the H atom filters only discrete frequencies 

from the offered spectrum (absorption) due to its natural oscillator frequencies 
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 ki . If all the offered frequencies are lower than the first natural frequency of the 

„resonator“  21 , then no frequencies can be absorbed. This is what is seen, in 

principle, in the Franck-Hertz experiment, Ref. [11], where a minimum of 

electron energy,  

E el  = 4,9 eV,  

is needed for the excitation of mercury vapour and the first resonance line of the 

mercury atom of is at the frequency  

 21  = 4,9 eV 2 / h. 

Further Consequences 

Lénard’s observation, Ref. [12], of the threshold value of the frequency within 

the photoelectric effect becomes also clear, in principle. A minimum frequency 

 g  is required to release the electrons. The electron cannot store energy at 

frequencies below  g  due to the loss of radiation. If the frequency of the 

radiation exceeds  g  then the electron has a chance of being released. The 

findings of Lénard and Millikan of the effect that the maximum energy of the 

released electron depends on the frequency of the light, can be explained at least 

qualitatively: The time dependency of the electron wave function, if the electron 

is considered as free, could be propitiously to the one of the electromagnetic 

radiation. However, since the electron however is not free inside the atom (or in 

the metal), the energy is to be reduced by the release energy. So is, according to 

Eq. (2), also its frequency. It should be mentioned here that Millikan took very 

exact measurements of h from the photoelectric effect because he did not want to 

give up the wave theory of radiation. According to these findings, the light 

quantum hypothesis of Einstein, Ref. [13], would not only be dispensable for the 
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explanation of the photoelectric effect, but also for the explanation of the line 

spectrum of the H atom for the Franck-Hertz experiment, Ref. [11]. 

Our theory has the advantage over the light quantum hypothesis, that the 

"transitional probabilities" can be calculated also according to Eq. (20), which is 

impossible with the photon hypothesis. In addition, we can imagine the 

excitation of the atom in space and time, which is also not possible with the 

photons. The complete Lagrange function can be constructed in our theory, as it 

is demonstrated, without quantization of the electromagnetic field.  

The relativity theory and the light quantum hypothesis are strictly speaking 

contradictory since in the infinitely short time the “quantum state” of the 

electron, i.e. the wave function of it, must change in the whole space, yet the 

electron has a finite mass. However, it should be remembered that in the year 

1905 physical ideas about the elementary processes in atomic area were just 

beginning to emerge. 

The re-explanation of Planck’s radiation formula, Ref. [1] and of Compton 

effect, Ref. [14], seems not to present a major problem in our theory, where there 

are no photons. Owing to the lack of space in this paper they will not be 

explained here. The re-explanation of the effect of the magnetic moment of the 

electron on the spectra and in the Stern-Gerlach experiment in Ref. [15] also 

waits to be calculated. Furthermore we plan to provide an extension of our 

theory for multiple body problems and the relativistic formulation. It is known 

that the Schrödinger eigenvalue problem fails in the Helium atom spectra.  

However, the question arises how can the observed phenomena that the radiation 

wave appears sometimes as a discrete process be explained, i.e. in the 

coincidence measurement of the Compton scattering. The answer would be that 
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the radiation interacts with a discrete material structure, also with an atom, and it 

is this, what we observe. 

After a careful performed revision of the fundamental concepts in physics, we 

will finally return to the physics of the fundamental processes of “elementary” 

particles, which is where we started from Ref. [10] and why the new variation 

problem has arisen. We will then treat the stable and unstable particle as well as 

the bounded nuclei and the radioactive nuclei with the same variation principle 

in a unified way within the Lagrange formalism. 

A New Variation Principle Instead of the “Energy Quantum Hypothesis” 

At this point some remarks about the new variation principle: The requirement of 

the second extreme value Eq. (12) means that the stationary solutions of the 

variation principle turn the location probability of particles in the interaction 

range into an extreme value. The fulfilment of the natural boundary condition, 

Eq. (16), depends only on the interaction within the spherical volume and 

replaces a mathematically based boundary condition (D = ). The bounded states 

and the decaying states of a system can be treated simultaneously with the 

variation principle.  

The eigenvalue problem Eqs. (14) – (16) in the context of this variation principle 

is new to mathematics especially since the natural boundary condition Eq. (16) 

includes the eigenvalue. However, the variation principle can be easily used to 

solve approximately the problem for stationary functions by numerical 

techniques, as shown in Refs. [8] and [9]. The eigenvalue problem is not a 

Hilbert space problem. The variation principle and the resulting eigenvalue 

problem refer to a subsystem of a completed system in the Lagrange theory.  
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The excited atom appears as a "resonator" and radiates with its oscillating charge 

density via the Maxwell theory. It produces discrete spectra in a finite space 

region. We have a hint that photons play no part in the emission or absorption of 

radiation by the atoms. Therefore, the relations in Eqs. (1) and (2) for photons 

(the proportionality of the energy and frequency E = h  and the relation between 

momentum and wave length   = h / p) should be considered very carefully as 

physical “reality”. The Planck’s constant h does not lead to an “energy quantum” 

in atomic physics. There is no need to for the quantization of the electromagnetic 

field (of quantum electrodynamics) in order to understand the 

absorption/emission of radiation by atoms if we use the new variation principle 

instead of the energy quantum hypothesis of light.  

The far reaching consequences of these statements will be discussed in following 

papers in which we replace the most famous hypothesis of the quantum theory 

with the new variation principle. The atomic processes will then be explained 

without any further hypothesis. After a revision of the fundamental physical 

concepts, we will describe the stable nucleus state and nucleus decays as well as 

the stable and unstable particles as stationary solution of the new variation 

principle. 

Conclusions 

The wave nature of radiation dominates in atomic processes because the 

approximation, which leads to the Eikonal equation of geometrical optics, but 

does not apply to waves- radiation there. Within the Lagrange theory a new 

variation principle describes the physically observed phenomena of discrete 

spectra of atoms. In the atomic processes only the appearance of h in the wave 

functions of particles is responsible for all the observed phenomena. This is not a 
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quantization of energy. The quantization of the electromagnetic field is not 

needed in this area. The fundamental axioms of physics and the elementary 

processes should be discussed and evaluated in this new context. This will lead 

to the treatment of the stable and decaying nucleus in the same manner as the 

stable and unstable particle as stationary solution of the variation principle. 
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