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Abstract 

The prognoses of Atomistic Theory of Matter, based on four kinds of point-like 

stable particles, are derived and then compared with the observed physical 

properties of particle systems. The four stable particles are the electrons (e), 

positrons (p), protons (P) and the eltons (E). These carry two kinds of conserved 

elementary charges, qi = {±e} and gi = {±g∙me, ±g∙mP}. Composite particle 

systems have conserved total electrical charges, Q = Σ qj, and total gravitational 

charges, G = Σ qj. The interactions between particles are non-conservative. The 

binding energies and sizes of bound states of two-particle systems are 

determined with Lagrange multipliers h, h
0
 = h/387 and h. These stable states 

have different gravitational and inertial rest masses. The composed stable many-

particle systems are the stable neutron and stable atoms (isotopes) with 

gravitational charges, G > 0. Unstable bound systems are the unstable neutron, 

excited atomic states and unstable particles (mesons and baryons) with lifetimes 

between 881.4 s and 10
-25

 s. Many-particle systems with gravitational charges, G 

= 0, are neutrinos and neutrino-like particles; these systems cannot condensate 

on each other. Elton-based stable particle systems with gravitational charges, G 

< 0, predicted by the theory, are rarely observed. Condensed matter composed of 

atoms with different signs of G > 0 and G < 0 gravitationally repulse each other; 

however, both kinds of matter have the same electromagnetic structure.  

Introduction 

The Atomistic Theory of Matter (ATOM) has solved the main tasks of physics 

[1]: the determination of what matter is and from which constituents matter is 

composed to ascertain the two fundamental interactions (electromagnetism and 

gravitation). The time developments of such physical systems have also been 

deduced [2]. Only stable elementary particles have the same gravitational and 

inertial rest masses, m
g
(i) = m

i
(i), i = e, p, P, E. A new physical axiom system 

defines ATOM:  

Four kinds of point-like stable, elementary particles exist: e, p, P and E. 

- The elementary particles carry two kinds of conversed elementary charges, qi  

=  {- e, + e, + e, - e} and gi  = {- g∙me, + g∙me, + g∙mP, - g∙mP}, i = e, p, P, E.  
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- The elementary charges cause the interactions between particles. They cause 

the interaction fields. The masses mP, me are the masses of proton and electron. 

 - The interactions propagate with c and the constant propagation is 

independent of the state of particle motion. 

Concerning physical measurements: it should be taken into account that 

- measurements with infinite precision cannot be assumed,  

- each measurement is performed in finite regions of space and time. 

This axiom system is the fundamental basis of the atomistic theory of matter, 

based on stable elementary particles which carry two kinds of conserved 

charges. In conventional physics the eltons are called “antiproton”. Protons and 

eltons are treated as stable elementary particles which are not composed of other 

particles. The elementary particles can be described with probability current 

densities, ji
(n)ν

(x) in finite ranges of Minkowski space, {x} ε Ω. The elementary 

particles fulfill the conservation equations, ∂νji
(n)ν

(x) = 0, i = e, p, P, E, as 

subsidiary conditions which cause Lagrange multipliers, λk. This paper discusses 

stable bound states of composite particle systems, N = NP + NE + Np +Ne, which 

different gravitational, m
g
(N), and inertial rest masses, m

i
(N). At first, we 

discuss electric neutrally two-particle systems, (P,e), (e,p), (P,E) and (E,p) and 

determine the binding energies and the sizes of these systems in connection with 

Lagrange multipliers. This paper does not use the hypothesis of the universality 

of free fall (UFF), energy conservation, quantization of energy, the energy-mass 

equivalence, E = m*∙c
2
, and the hypothetical quark theory.  

 

Many-Particle Systems  

Generally, the total electric charges, Q(N), are conserved for many-particle 

systems composed of N = NP + NE + Np  + Ne elementary particles, i = e, p, P, E, 

in finite Minkowski space, Ω,  

Q(N) = + e∙((NP - NE) + (Np – Ne)), with the elementary electric charge e. (1) 

Since electromagnetism and gravitation always act simultaneously, and since the 

electric force is approximately 10
+42

 time greater than gravity, one can only 

experimentally study gravity effects by examining electrically neutral systems. 
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Electrically neutral particle systems must be NP + Np = NE + Ne. Only such 

systems have stable bound states. 

The total gravitational charges, G(N),  of composed systems are also conserved  

G(N) = + g∙((NP - NE)∙mP + (Np – Ne)∙me), with mP/me = 1836.1.  (2) 

The universal gravitational constant is G = g
2
/4∙π. We can subdivide the many-

particle systems into total gravitational charges with G(N) > 0, G(N) = 0 and 

G(N) > 0. The gravitational interaction between two composed particles/bodies 

depends on the product G(Nl)∙G(N2). If G(Nl)∙G(N2) > 0 the gravitational force 

is attractive, if G(Nl)∙G(N2) < 0 it is repulsive. 

For a composed system the gravitational mass  

m
g
(N) = + |(NP - NE)∙mP + (Np – Ne)∙me)|.       (3) 

is a conserved entity. The gravitational mass can also be zero. 

The inertial rest masses of stable bound states 

m
i
(N) = + (NP + NE)∙mP + (Np + Ne)∙me – E(binding,λk)/c

2
 ≥ 0,   (4) 

are functions of the binding energy, E(binding,λk), which itself depends on the 

discrete Lagrange multipliers [2], λk. Since m
g
(N) and m

i
(N) are different, the 

UFF doesn’t hold. The inertial mass, m
i
(N), can also be zero if  

E(binding,λk) = ((NP + NE)∙mP + (Np + Ne)∙me)∙c
2
.     (5) 

These bound states are the energetic lowest states, the ground states (Gs) of 

many-particle systems. 

 

Two-Particle Electrically Neutral Systems: (P,e), (e,p), (P,E) and (E,p) 

At first, we regard the electric neutrally two-particle which have bound states. 

Sommerfeld’s discovery, show us that for a hydrogen atom, H = (P,e), there is a 

known connection between the Planck constant, h, the “ground state energy”, 

the reduced mass meP’ = me∙mP/(mP + me) and the two natural constants, e and c,  

h = e
2
/2∙c∙( meP’∙c

2
/2∙E(H-atom,h))

1/2
.       (6) 
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The energy, E(H-atom,h), radiates from the hydrogen atom. Since we consider 

the Planck constant as Lagrange multiplier, λk = h, [2] we take this relation and 

generalize it with different Lagrange multipliers  

λk = e
2
/2∙c∙( mij’∙c

2
/2∙E(binding,λk))

1/2
,      (7) 

for two particles, i and j, with the binding energy E(binding,λk). The expression 

(2∙E(binding,λk)/mij’∙c
2
)

1/2
 = (v(i,j)/c)/(1 – (v(i,j)/c)

2
)

1/2
, 

is known as the relativistic relative velocity of particles, (v(i,j)/c), in bound states 

at the binding energy E(binding,λk). In a hydrogen atom the electron moves with 

the relative velocity, v(e,P)/c = 1/137.036 = 0.729736∙10
-2

, around the proton and 

produces a stable bound state in a timely stationary mutual interaction field. 

The distance between proton and electron in the “ground state” of a hydrogen 

atom is also known. Expressed with h it is 

r(e,P) = h
2
/(4∙π

2
∙ meP’∙e

2
).         (8) 

We also generalize this relation for the relative distances of any two-particle 

stable bound system composed of i and j particles and Lagrange multiplier, λk, as 

r(i,j) = λk 
2
/(4∙π

2
∙ mij’∙e

2
).         (9) 

The phenomenological relations, Eqs. (7) and (9), are very helpful when 

connecting the Lagrange multipliers with physical properties of two-particle 

systems. From known binding energies, E(binding,λk), we are able to calculate 

the Lagrange multipliers, λk, and with λk the relative distances between two 

particles in timely stationary bound states, without solving ab initio variation 

calculations. With v(i,j) and r(i,j) can be calculated the magnetic moments of two-

particle systems.    

The particle system (P,e) gives a hydrogen atom as a timely stationary bound  

state (binding energy E(H-atom,h) = 13.6 eV), corresponding to the Lagrange 

multiplier, λk = h. The Planck constant, h, has the value h = 4.136∙10
-15

 eV∙s.  

The gravitational mass of hydrogen atom is  

m
g
(H) = + mP - me,         (10) 

and its inertial rest mass in the stable bound state is 

m
i
(H) = + (mP + me) – E(binding,H)/c

2
 = + (mP + me) – 13.6 eV/c

2
.  (11) 
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The energy 13.6 eV is radiated from the hydrogen atom. In a hydrogen atom the 

relative distance between electron and proton is given by the Bohr radius 

r(e,P) = h
2
/(4∙π

2
∙ meP’∙e

2
) = 0.529∙10

-8
 cm.      (12) 

For the electron-positron system the bound positronium state, Ps = (e,p), is also 

observed. Since the reduced mass is mep
’
 = me/2, its binding energy is the half of 

binging energy of a hydrogen atom, E(binding,Ps) = 6.8 eV, and its size is r(Ps) 

= 2∙0.529∙10
-8

 cm = 1.058∙10
-8

 cm. The gravitational mass for positronium is 

zero, m
g
(Ps) = 0, and its inertial rest mass is 

m
i
(Ps) = 2∙me - 6.8 eV/c

2
 ≈ 1.022 MeV/c

2
.      (13) 

The mean lifetime of the so called para-positronium (p-Ps) is 0.125∙10
-9

 s and 

that of the ortho-positronium is 142∙10
-9

 s. Positronium radiates its energy, 

2∙me∙c
2
 = 1.022 MeV (approx.) and forms a stable bound state called electron-

neutrino, νe = (e,p). The inertial rest mass of the electron-neutrino is zero, 

m
i
(νe) = 2∙me – E(binding,νe)/c

2
 = 0.       (14) 

The binding energy of the electron-neutrino is E(binding,νe) = 2∙me∙c
2
. From this 

binding energy we can determine the value of a second Lagrange multiplier, λk = 

h
0
, according to Eq. (7) as  

h
0
 = e

2
/2∙c∙(1/8)

1/2
  = h/387.        (15) 

According to Eq. (9), the distance between the particles in the electron-neutrino 

is  

r(νe) = 0.703∙10
-13

 cm.         (16) 

The particles move with the relative velocity in electron-neutrino, νe 

(v(νe)/c)/(1 – (v(νe)/c)
2
)

1/2
 = (4)

1/2
 → (v(νe)/c) =(4/5)

1/2
 = 0.894%.  (17) 

Electrons and positrons do not annihilate each other, they form a state νe.  

A similar calculation can also be made for the proton-elton system, (P,E). The 

protonium, (Pn), calculated with h and Eq. (7), has the binding energy  

E(Binding,Pn) = e
4
∙mPE‘/8∙h

2
 = 12.459 KeV,     (18) 

with mPE‘ = mP/2. Protonium is called as “antiprotonic hydrogen” in 

conventional physics. 
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According Eq. (9) the size of the protonium is  

r(Pn) =  0.577∙10
-11

 cm.         (19) 

In protonium, the relative velocity of the particles, vPE/c, is 

(v(Pn)/c) ≈ ( 4∙12.459 KeV /938.272 MeV) = 0.531∙10
-4

 .   (20) 

But it was not until 2006 that scientists realized protonium can be generated 

during experiments. 

Similarly to the positronium, the protonium radiates 2∙mP∙c
2
 = 1876.544 MeV 

energy (approx.) and forms a proton-neutrino, νP = (P,E). For a proton-neutrino, 

νP, the gravitational mass and the inertial rest mass are zero 

m
i
(νP) = 2∙mP – E(binding,νP)/c

2
 = 0.       (21) 

The binding energy of the proton-neutrino is E(binding,νP) = 2∙mP∙c
2
= 1876.544 

MeV. With this binding energy we can determine (according to Eq. (7)) another 

Lagrange multiplier and it has the same value, λk = h
0
 = h/387, as the electron-

neutrino. The size of the proton-neutrino, νP, is according Eq. (9) 

r(νP) = 0.383∙10
-16

 cm.         (22) 

The particles move in νP with the relative velocity 

(v(νP)/c)/(1 – (v(νP)/c)
2
)

1/2
 = (4)

1/2
 → (v(νP) /c) = 0.894%.   (23) 

Also protons and eltons do not annihilate each other. The (e,p) and (P,E) particle 

systems have gravitational charges zero. 

With the Lagrange multiplier, h
0
, we can calculate a further stationary bound 

state of the proton-electron system, (P,e), that of a stable neutron N
0
. The 

binding energy of N
0
 is (according Eq. (7)) 

E(binding,N
0
) = 2.04 MeV,        (24) 

and its size is 

d(N
0
) = 2∙r(N

0
) = 0.702∙10

-13
 cm.       (25)  

It is nearly as big as the electron-neutrino, according to Eq. (16). The electron 

moves in N
0
 around the proton at the relative velocity  

(v(N
0
)/c)/(1 – (v(N

0
)/c)

2
)

1/2
 = (2∙2.04/0.5107)

1/2
 → (v(N

0
)/c) = 0.942%. (26)  
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Established physics has concluded that nearly 74% of matter in our universe is 

composed of hydrogen atoms, 24% is 
4
He atoms and only less than 2% of all the 

matter is heavier atoms. But, the free flying stable neutrons and neutrinos are not 

counted. It is also fail to count the elton-hydrogen atoms, elton-
4
He atoms and 

heavier elton-atoms. This reduces the total of H-atoms and 
4
He atoms to fewer 

than 37 % and 12%. 

Moreover, the proton-electron system, (P,e), can also radiate all of its mass as 

energy, to obtain  

E(binding,(P,e)) = (mP + me)∙c
2 
= 938.781 MeV.

 
    (27) 

in order to get its inertial mass equal to zero 

m
i
((P,e)) = (mP + me)– E((P,e))/c

2
 = 0.      (28) 

The corresponding Langrage multiplier is  

h = e
2
/2∙c∙((me∙mP)

2
/2∙(me+mp)

2
)

1/2
 = h/22769,     (29) 

and the radius of this energetic lowermost ground state (Gs) is 

r(Gs) = rBohr∙1.4∙10
-8

= 0.748∙10
-16

 cm       (30) 

Similar calculations can also be performed with elton and positron, (E,p). 

The radius r(Gs) in Eq. (30) leads to the greatest mass density of matter 

ρmax = (mp+me)/(4/3∙π∙r(Gs)
3
) = 1.75∙10

+24
 g/cm

3
.     (31) 

The maximum mass density is ca. 10
9
 times greater than the mass density of 

neutron-stars. Under their mutual interactions, elementary particles cannot 

approach each other closer than ca. 10
-17

 cm, despite the 1/r
2
 singularity of the 

static electromagnetic and gravitational forces. The elementary particle pairs e, 

p, and  P, E can neither be annihilated, nor created. Accordingly, neither the Big 

Bang theory is valid, nor are Black Holes really space-time singularities. The 

elementary particles can only accumulate and disaggregate in course of time. 

Furthermore, Dark Matter doesn’t exist, since the astrophysicists applied an 

incorrect gravitation law during their calculation of galactic movement. The 

principle of two kinds of supernova explosions is immediately recognizable. The 

one kind is when shell electrons are electromagnetically disturbed and drop in 

the nuclei. The energy production of the Sun happens because of forming 

neutrons from H atoms through electromagnetic disturbance radiating 2.04 MeV 
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energy and not due to nuclear fusions. The other kind of supernova explosion is 

when neutrons and nuclei with the sizes of 10
-13

 cm are electromagnetic 

disturbed and drop in a state with a size of 2∙r(Gs) = 1.45∙10
-16

 cm. 

 

Many-Particle Electrically Neutral Systems Composed of P, e, p   

Many-particle systems composed of (P,e,p) are normal proton-based matter. 

Because the sizes of N
0
 and νe are almost the same, we conclude that the 

unstable neutron, N, has the composition, N = (P,e,p,e) and its decay gives a 

proton, an electron, an electron-neutrino and gamma ray (without weak 

interaction), as observed 

N = (P,e,p,e) → P + e + (e,p) + γ - ray= P + e + νe+ γ - ray.   (32) 

The gravitational mass of N is the same as for N
0
 

m
g
(N) = mp – me,          (33) 

however, the inertial mass of the unstable neutron is  

m
i
(N) = mp + 3∙me – E(binding,N)/c

2
= mp + 3∙me – 0.24 MeV/c

2
.
 

 (34) 

The binding energy of N can be calculated from the observed inertial mass of 

the unstable neutron, m
i
(N) = 939.565 MeV/c

2
, to be E(binding,N) = 0.24 MeV. 

Apparently, the nuclei of our isotopes do not contain elton particles. The eltons 

are excluded from the nuclei because the proton-neutrino, as a proton-elton pair, 

has a size of 0.383∙10
-16

 cm, and it is too small to remain in nuclei with sizes 

greater than 10
-13 

cm. Our isotopes are only composed of protons, electrons and 

positrons. An electrically neutral isotope contains A protons, Np positrons and 

(A + Np) electrons, whereby Z electrons are in the electron shells. 

The gravitational mass of an electrically neutral isotope is    

 m
g
(A,Z isotope) = A∙(mP – me) ,       (35) 

and its inertial rest mass is  

m
i
(A,Z isotope) = A∙(mP + me) + 2∙Np∙me – E(binding,A,Z isotope)/c

2
. (36) 

Only the inertial rest mass, m
i
(A,Z isotope), contains the number of positrons, 

Np, within the nucleus. The gravitational mass, m
g
(A,Z isotope), only depends 

on mass number, A, and is a multiple of (mP – me). With a variation principle 
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[2], the binding energy of isotopes can be calculated with ab initio calculations. 

Here, A protons, Np positrons and (A + Np –Z) electrons are in the nuclei and Z 

electron in the electron shells. The elementary particles in the nuclei are 

governed by the Lagrange multiplier, h
0
, (without strong interaction) and the Z 

electrons in the electron shells are governed by the Planck constant h.  

In nuclear physics, the proton (P) and the unstable neutron (N) are treated as 

independent particles, called nucleons, which compose the nuclei. The binding 

energies of isotopes are calculated (in nuclear physics) according the formula  

E
nuclear physics

(binding, A,Z isotope) = (Z∙mP + NN∙m
i
(N) – m

i
(A,Z isotope))∙c

2
. 

with the number of protons, Z, and the neutron number, NN. For the neutron 

mass, the inertial rest mass of an unstable neutron, m
i
(N), is taken. The inertial 

rest masses of isotopes, m
i
(A,Z isotope), are available from mass spectroscopy 

[3].  

The calculations of isotope binding energies of are flawed, because the inertial 

masses of the neutrons are different,  

m
i
(N

0
) = (P,e) = mP  + me – 2.04 MeV, 

m
i
(N) = (P,e,p,e) = mP  + 3me – 0.24 MeV.  

It is also obvious that the numbers of (e,p) pairs in particles systems (i.e. the 

number of positrons, Np, in the nuclei), are not unambiguously determined if we 

consider only inertial rest masses. The gravitational masses of an isotope only 

depends on the mass number A = Z + NN. The difference between the 

gravitational mass and inertial rest mass of isotopes leads to UFF violation [4]. 

With the gravitational mass, (m
g
(A isotope), the relative mass defect is known  

∆(A,Z isotope) = (m
g
(A isotope) – m

i
(A,Z isotope))/m

i
(A,Z isotope), 

for all isotopes and they are in the range 

-0.109% (hydrogen atom) < ∆(A,Z isotope) < + 0.784% (
56

Fe isotope). 

We could perform the same calculation for elton-isotopes if we exchange 

protons with eltons and electrons with positrons. This would calculate the elton-

based, condensed matter. The proton-based matter and the elton-based matter 

gravitationally repulse each other. The neutrinos and neutrino-like particles 

(composed of the same number of proton and elton and the same number of 

electron and positron) transfer particle systems between proton-based matter and 
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elton-based matter. Most probably, distinct galaxies exist as condensations of 

proton-based and of elton-based isotopes. The electrical properties of elton-

based matter are those of proton-based matter. With the electromagnetic spectra 

we cannot decide between elton-based or proton-based matter. 

Symmetry considerations in ATOM are connected to simultaneously exchanges 

of protons with eltons and electrons with positrons, 

proton   ↔ elton,       or (+ e, + g∙mp) ↔ (- e, - g∙mp),    (37) 

electron ↔ positron, or (- e, - g∙mp) ↔ (+ e, + g∙mp).    (38) 

Since the electrical and gravitational interactions contain the product of the sums 

of elementary charges of two bodies,  

Q1∙Q2 = Σiqi∙ Σjqj  and G1∙G2, = Σigi∙ Σjgj,      (39) 

that are in bound states. Since the coupling of the probability density currents on 

the electromagnetic field is 

+  j
(em)

ν(x)∙A
(em)ν

(x) = + Σi=e,p,P,E qi∙ji
(n)

ν(x)∙A
(em)ν

(x),    (40) 

and for gravitation [2] 

-  j
(g)

ν(x)∙A
(g)ν

(x) = - Σi=e,p,P,E gi∙ji
(n)

ν(x)∙A
(g)ν

(x),     (41) 

- we conclude that the simultaneous exchange of the particle pairs doesn’t 

change the interactions, since the signs of the probability current densities and 

those of the fields are also changed. However, the symmetry considerations 

exchange proton-based matter for elton-based matter. 

To focus on the capture of electrons by protons: - if the kinetic energies of 

electrons are not too large, the Coulomb forces between these particles declines 

the paths of electrons, and during these defections the electrons lose energy. 

This continues up to a point where the electrons can no longer escape and are 

captured by the protons. The captured electrons continue to radiate their energy 

until they reach the ground states of the electron shell. Electron motion of in 

exited and in ground states is governed by a Lagrange multiplier, called the 

Planck constant, h. However, in these atomic ground states, the electron + 

nucleon system is not at their lowest energetic state. For instance, if a hydrogen 

atom at ground state is disturbed by electromagnetic radiation, the electron can 

further lose energy and through the attractive Coulomb force the electron can 

approach the proton forms a stable neutron, N
0
. It will transfer its binding energy 
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E(binding,N
0
) = 2.04 MeV as electromagnetic radiation. It should be noted, that 

excited atom states are resonance capable, unstable particle systems with 

lifetimes of 10
-4

 – 10
-10 

s. In excited states the charge densities of electrons, 

e∙je
ν
(x) oscillate between frequencies, h∙(νi–νj) and the excited states 

simultaneously radiate electromagnetic rays with the same time dependencies of 

h∙(νi –νj). The energy is delivered continuously; neither the energy of the particle 

system, nor that of the radiation is quantized. The radiating atoms are damped 

oscillations. 

 

Observed Mass Splitting of Mesons and Neutrino-Like Particle Systems  

We have seen that there are two timely stationary, stable basic neutrinos, the 

electron-neutrino, νe = (e,p), and the proton-neutrino, νP = (P,E), with inertial rest 

masses and gravitational masses of zero. Further neutrino-like particle systems 

can also be formed as stable bound states, for instance e.g. a composite-neutrino 

νc =  (P,e,p,E).           (42) 

All neutrino-like particle systems have the same numbers of protons and eltons 

and the same numbers of electrons and positrons, NP = NE and Ne = Np. The 

gravitational masses of all neutrino-like particle systems are zero, but the inertial 

rest masses don’t have generally to be zero. The experimental identification of 

neutrino-like particle systems is not pronouncedly because these don’t have 

electrical and gravitational charges. However, we can usual observe them 

indirectly through the decays of the agglomeration with an electrically charged 

elementary particle. Fortunately, such particle systems are unstable. The charged 

Myons are not elementary particles, they are composite particles 

μ 
+
 = (P,e,p,E,p) → p + (e,p)+ (P,E)  = p + νe + νP,      (43) 

μ 
-
 = (e,P,e,p,E) → e + (e,p)+ (P,E)  = e + νe + νP.     (44) 

They are agglomerations of e/p to a νc. The lifetimes of charged Myons are 

2.2∙10
-6

 s. The inertial rest masses are ca. 207 times greater than the electron 

mass,  

m
i
(μ

±
) = 2∙mP + 3∙me - E(binding,  μ

±
)/c

2
 =

 
105.658 MeV/c

2
.   (45) 

The binding energy is 

E(binding, μ
±
) = (2∙mP + 3∙me)∙c

2
 - 105.658 MeV = 1772.419 MeV. 
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Since the binding energy of a proton-neutrino is E(binding,νP) = 1876.544 MeV, 

r(νP) = 0.383∙10
-16

 cm, and further r(Gs) = 0.748∙10
-16

 cm, we say that the 

structures of charged Myons are governed by the Lagrange multipliers h
0
 and h. 

We identify the electrically neutral Myon (such a particle is excluded by particle 

physics) as  

μ
0
 = νc =  (P,e,p,E).         (46) 

This identification is experimentally difficult to verify. It has some similarity 

with to the postulated tau-neutrino of particle physics, ντ,  (discovered, Fermilab, 

2000) which has a very small inertial rest mass. Generally, the experimental 

identification of particle systems containing (e,p)-pairs, and/or (P,E)-pairs is 

difficult because these particle pairs are electrically and gravitationally neutral.  

Nevertheless, we identify the charged Pions due to their decays as 

π
+
 = (P,e,p,e,p,E,p) → μ

+
 + νe,        (47) 

π
-
 = (e,P,e,p,e,p,E) → μ

-
 + νe,        (48) 

and the neutral Pion as  

π
0
 = (P,e,p,e,p,E) → γ-rays + μ

0
 + νe or π

0
 → γ-rays + νe + νe+ νp.  (49) 

However, the decay into gamma rays, π
0
 → 2 γ-rays, is theoretically prohibited. 

The inertial rest mass of a charged Pion is ca. 273 times greater than that of the 

electron,  

m
i
(π

±
) = 2∙mP + 5∙me  - E(binding, π

 ±
)/c

2
 =

 
139.570 MeV/c

2
.   (50) 

The binding energy of a charged Pions is 

E(binding, π
 ±

) = 1739.528 MeV, 

and its lifetime is 2.6 ∙10
-8

 s.  

The inertial rest mass of the neutral Pion is only ca. 264 times greater than that 

of the electron,  

m
i
(π

0
) = 2∙mP + 4∙me  - E(binding, π

 0
)/c

2
 =

 
134.976 MeV/c

2
,   (51) 

E(binding, π
 0
) = 1743.612 MeV, 

and its lifetime is 8.4∙10
-17

 s. Probably, π
 0
 is an exited state of (P,e,p,e,p,E). 
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We continue by identifying charged Kaons: K
+
, K

-
, with lifetimes, 1.24∙10

-8
 s, 

and with inertial rest mass m
i
(K

±
) =  493.7 MeV/c

2
. Experiments have shown 

that there are two neutral Kaons with two different lifetimes: K
0

L = 5∙10
-8

 s and 

K
0

S = 1∙10
-10

 s. The inertial rest mass is m
i
(K

0
) =  497.6 MeV/c

2
. It could be that 

K
+
 = (2P,2e,2p,2E,p) → μ

+
 + μ

0
, 63% of the K

+
 decays,    (52) 

or that 

K
+
 = (2P,4e,4p,2E,p) → π

 +
 + π

0
 , 22% of the K

+
 decays.    (53) 

Furthermore, the compositions of negatively charged Kaon could be  

K
-
 = (e,2P,2e,2p,2E), or K

-
 = (e,2P,4e,4p,2E). 

The inertial rest mass of the charged Kaon is 966 times greater than me 

m
i
(K

±
) = 4∙mP + 5∙me  - E(binding, K

 ±
)/c

2
 =

 
493.677 MeV/c

2
,   (54) 

or 

m
i
(K

±
)  = 4∙mP + 9∙me  - E(binding, K

 ±
)/c

2
 =

 
493.677 MeV/c

2
. 

The compositions of neutral Kaon could be (see the different decay modes) 

K
0

L = (2P,2e,2p,2E), or K
0

S = (2P,4e,4p,2E). 

The inertial rest mass of the neutral Kaon is ca. 973 times the electron mass 

m
i
(K

0
L) = 4∙mP + 4∙me  - E(binding, K

 0
L)/c

2
 =

 
497.648 MeV/c

2
,   (55) 

m
i
(K

0
S) = 4∙mP + 8∙me  - E(binding, K

 0
S)/c

2
 =

 
497.648 MeV/c

2
,    

We identify the Tauon (experimentally detected: SLAC, M. L. Perl, 1977) as τ
-
 

= (e,3P,5e,5p,3E), or τ
-
 = (e,3P,4e,4p,3E), which has diverse decay modes. The 

Tauon could have an observed inertial rest mass of 

m
i
(τ

-
) =  6∙mP + 11∙me (or 9∙me) - E(binding, τ

-
)/c

2
 = 1776.82 MeV/c

2
, (56) 

and a lifetime of 2.9∙10
-13

 s. The tau-neutrino could be  

ντ  = (3P,5e,5p,3E), or ντ  = (3P,4e,4p,3E). 

There are diverse meson resonances observed with inertial rest masses all 

greater than ca. 540 MeV/c
2
. Generally, for the final identification of meson 

resonances composed of elementary particles, all decays A → B + C must be 

studied with conservation of the elementary particles, e, p, P and E their charges. 
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Table 1. The observed mass splitting of mesons and masses  

Name Inertial Rest Mass Gravitational Mass   Sum of Masses    

P/E       938.272 MeV/c
2
   mP  elementary particle 

e/p         0.511 MeV/ c
2
   me    elementary particle   

μ
±   

105.658 MeV/c
2 

  me  2∙mP  + 3∙me  

μ
0
              ?       MeV/c

2
    0  2∙mP  + 2∙me   

π
±
    139.547 MeV/c

2
  me  2∙mP  + 5∙me  

π
0
   134.976  MeV/c

2
   0  2∙mP  + 4∙me  

K
±
   493.677 MeV/c

2
  me  4∙mP  + 5∙me, or 

K
±
   493.677 MeV/ 

2
  me  4∙mP  + 9∙me  

K
0

L   497.648 MeV/c
2
    0  4∙mP  + 4∙me 

K
0

S   497.614 MeV/c
2
     0  4∙mP  + 8∙me  

τ
- 

  1776.82 MeV/c
2
  me  6∙mP  + 11∙me (or 9∙me) 

 

Table 2. Two-particle bound states: binding energies, sum of masses and sizes 

(P/E, mP = 938.272 MeV/c
2
  stable elementary particles     point-like) 

(p/e, me =      0.511 MeV/c
2    

stable elementary particles     point-like) 

H           13.6∙10
-6 

MeV     stable with h   mP + me 0.529∙10
-8

  cm  

N
0   

               2.04  
 
MeV    stable with h

0
   mP + me 0.702∙10

-13
 cm 

Gs           938.781
 
MeV    stable with h    mP + me 1.496∙10

-16
 cm 

Ps                6.8∙10
-6  

MeV    stable with h         2∙me 1.058∙10
-8

  cm 

νe               1.022
  
MeV     stable with h

0
          2∙me 0.703∙10

-13
 cm 

Pn         3.19∙10
-3 

MeV    stable with h        2∙mP 0.226∙10
-11

 cm 

νP          1876.544
 
MeV    stable with h

0
           2∙mP 0.383∙10

-16
 cm 

 

It is from experiments unknown, whether neutrino-like particles are stable 

systems and if they have vanishing inertial rest masses. The inertial rest mass 

and lifetime of μ
0
/νc = (P,e,p,E) is unknown. π

0
 decays with γ-rays radiation and 



 

- 15 - 
 

with a 98.82% decay probability. Therefore, it is possible that the 

experimentally observed π
0
 (inertial rest mass, m

i
(π

0
) = 134.976  MeV/c

2
) is an 

excited state of the stable composite neutrino (P,2e,2p,E). The atomistic theory 

requires neutrino-like particles to be stable particle systems with vanishing 

inertial rest masses. 

Table 3. Mesons: binding energies, g-charges, sum of masses and lifetimes  

Name Binding Energy Gravitational Charge  Sum of Masses   Lifetime in s 

μ
±
      1772.419 MeV        ± g∙me   2∙mP  + 3∙me  2.2∙10

-6 

μ
0
      1877.566 MeV (theor.)    0    2∙mP  + 2∙me  ∞ (?)   

π
±
      1739.528 MeV          ± g∙me  2∙mP  + 5∙me  2.6∙10

-8 

π
0
      1743.612 MeV       0   2∙mP  + 4∙me   8.4∙10

-17
 

K
±
     3261.966 MeV          ± g∙me  4∙mP  + 5∙me  1.24∙10

-8
, or 

K
±
     3264.010 MeV          ± g∙me   4∙mP  + 9∙me  

K
0

L    3257.484 MeV        0    4∙mP  + 4∙me   5.0∙10
-8

  

K
0

S    3258.706 MeV        0    4∙mP  + 8∙me   1.0∙10
-10

 

τ
-
       3857.411 MeV           - g∙me    6∙mP  + 11∙me  2.9∙10

-13
, or 

τ
-
       3858.433 MeV           - g∙me    6∙mP  +   9∙me  2.9∙10

-13 

 

Observed Mass Splitting of Baryons and Neutrino-Like Particle Systems  

We continue the prognoses of ATOM with the identification of baryons. In 

baryons, the number of protons and eltons differ always by one. The unstable 

neutron, N = (P,e,p,e) is already presented. The Λ
0
  Lambda decays  are  

Λ
0
  → P + π

-
 and Λ

0
  → N

0
 + π

0
, with lifetime of 2.63∙10

-8
 s. 

The Sigma decays are  

Σ
+
 → P + π

0
 and Σ*

+
 → N + π

+
, with lifetime of 8.02∙10

-11
 s. 

Σ
0
 → Λ

0
  + γ-ray with lifetime 7.4∙10

-20
 s. The Σ

0 
is an excited state of Λ

0
.   

Σ
-
 → N

0
 + π

-
, with lifetime 1.48∙10

-10
 s. 

The Xi decays are  
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
0
 →  Λ

0
 + π

0
, with lifetime 2.90∙10

-10
 s, 


-
 →  Λ

0
 + π

-
, with lifetime 1.64∙10

-10
 s. 

The negatively charged Omega decays are  

Ω 
–
 →  Λ*

0
 + K

-
,  Ω 

–
 →  

0
 + π

-
, Ω 

– 
→  

-
 + π

0
, with lifetime 8.2∙10

-11
 s. 

Furthermore, there are many baryon resonances observed, all with inertial rest 

masses greater than ca. 1200 MeV/c
2
. The lifetimes of the baryons, up to that of 

N, are less than 10
-10

 s.  

For the baryon and meson composition of elementary particles, e ,p, P and E, all  

particle reactions A + B → C + D, and decays A → B + C,   (57) 

must to be studied; for these studies the conservation of elementary particles are 

prime considerations. Such analyses are urgently needed and must be performed 

in detail to ascertain the elementary particles compositions of baryons and 

mesons [1, 5].  

The compositions of Lambda particle can be 

Λ
0
 = (2P,3e,2p,E) = (P,e) + (P,2e,2p,E),       (58) 

Λ*
0
 = (P,2e,3p,2E) = (E,p) + (P,2e,2p,E), .       

The compositions of Sigma particles are 

Σ
+
 = (2P,2e,2p,E), Σ

-
 = (2P,4e,2p,E),       (59) 

Σ
0
 = (2P,3e,2p,E), is an exited state of  Λ

0
.       

Σ*
+
 = (P,2e,4p,2E), Σ*

-
  = (P,3e,3p,2E),      (60) 

Σ*
0
 = (P,2e,3p,2E), is an exited state of  Λ*

0
.      

The   particles are composed as 


-
 = (3P,6e,4p,2E), 

0
 = (3P,5e,4p,2E)      (61) 

 *
-
  = (2P,4e,4p,3E),   *

0
   = (2P,4e,5p,3E)     (62) 

There are also Λ
-
, Λ

+
, Λ

++ 
particles registered, but not 

+
 and not  *

+
.  

The composition of negatively charged Omega is probably  
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Ω
–
 = (4P,6e,4p,3E) or Ω

–
 = (4P,8e,6p,3E). 

 

Table 4. The observed mass splitting of baryons and masses 

Name Inertial Rest Mass  Gravitational Mass   Sum of Masses    

N       939.565 MeV/c
2
   mP -   me     mP +  3∙me

 

Λ     1115.683 MeV/c
2
   mP -   me  3∙mP +  5∙me 

Σ 
+
   1189.37   MeV/c

2
   mP          3∙mP +  4∙me, 

Σ
0
    1192.642 MeV/c

2
   mP -    me   3∙mP +  5∙me  

Σ
-
    1197.449 MeV/c

2
   mP - 2∙me  3∙mP +   6∙me  


0
   1314.86   MeV/c

2
   mP -    me  5∙mP +   9∙me  


-
   1321.71   MeV/c

2
   mP - 2∙me  5∙mP + 10∙me  

Ω
-
   1672.45     MeV/c

2
   mP - 3∙me  7∙mP + 10∙me 

 

In the hypothetical quark model, the baryons are classified by their isospins and 

their quark contents, giving six groups of baryons: nucleons (N), Delta (∆), 

Lambda (Λ), Sigma (Σ), Xi ( ) and Omega (Ω). In quark model it is difficult to 

calulate the masses of baryons and mesons because the masses of quarks are 

unknown. 

The here presented first attempts of compositions of baryons and mesons from 

elementary particles are agglomerations of neutrino-like and charged particles. 

At baryons and mesons “the chemistry of neutrino-like particles” can be studied. 

 The recognized neutrino-like particles that up to now are appearing in mesons: 

 μ
0
 = (P,e,p,E), π

0
 = (P,2e,2p,E), K

0
L = (2P,2e,2p,2E), 

 K
0

S = (2P,4e,4p,2E),  ντ  =  (3P,5e,5p,3E), or ντ  =  (3P,4e,4p,3E), 

and in baryons:   

(P,2e,2p,E), (P,4e,4p,E), (2P,4e,4p,2E), (3P,4e,4p,3E), (3P,6e,6p,3E). 

We conclude that also for baryons the Lagrange multiplier, h
0
 and h, govern the 

particle bound states as for mesons.  
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Table 5. Baryons: binding energies, g-masses, sum of masses and lifetime  

Name      Binding Energy   Gravitational Mass  Sum of Masses      Lifetime in s 

N               0.24    MeV/c
2
  mP -   me           mP + 3∙me   881.5

 

Λ
0
        1707.688 MeV/c

2
     mP -   me           3∙mP + 5∙me   2.63∙10

-10 

Σ
+
        1627.490 MeV/c

2
     mP                   3∙mP + 4∙me   8.02∙10

-11
 

Σ
0
        1624.729 MeV/c

 2
    mP -    me           3∙mP + 5∙me   7.4∙  10

-20
 

Σ
-
        1619.237 MeV/c

2
    mP - 2∙me        3∙mP +  6∙me   1.48∙10

-10
 


0
      3381.099 MeV/c

2
     mP -    me           5∙mP +  9∙me   2.90∙10

-10
 


-
       3375.0     MeV/c

2
    mP - 2∙me       5∙mP + 10∙me   1.64∙10

-10
 

Ω
-
       4973.097 MeV/c

2   
mP - 3∙me       7∙mP + 10∙me  8.2  ∙10

-11
 

 

The sizes of baryons and mesons are in the range of ca. 10
-13 

cm and
 
10

-15
 cm. 

In established physics, the list of elementary particles includes fermions and 

bosons [6]. Quarks and leptons belong to the fermions. Elementary bosons are 

considered to be responsible for the four hypothetical fundamental forces of 

nature and are called force particles (gauge bosons). The neutrinos, the Myons 

and Tauons are treated as elementary particles. Composite particles which 

interact via strong interaction are hadrons, which are subdivided into baryons 

and in mesons. Furthermore, atomic nuclei, atoms and molecules are also 

recognized. Condensed matter is recognized, and consists of atoms and 

molecules. Theoretical physicists are considering further hypothetical particles, 

and use string and membrane models in order to explain nature. However, the 

particles physicists do not understand what determine particle mass.  

On the contrary, ATOM uses only two fundamental interactions 

(electromagnetism and gravitation) and recognizes that four kinds of stable 

elementary particles cause these interactions with two conserved charges. The 

interactions propagate with c and this constant is independent of the particle 

motion. The above derived explanation of composite particles offers the 

determination of masses, binding energies and sizes (at least for two-particle 

systems). We can also calculate the relative velocities; we are also able to 

calculate a further physical property of particle systems, the magnetic moments 

of particle systems with two or more particles. So, we are able to calculate all 
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physical properties of two-particle systems, which themselves compose all other 

particle systems and condensed matter. These principles are sufficient. 

 

The Dynamics of Physical Systems 

For the formulation of dynamics, Lagrange, Euler and Hamilton produced a 

generalized description. They created the Lagrange formalism.  The equations of 

motion can be derived according to the Hamilton principle. This allows the use 

of a more general form of interaction. Nevertheless, Lagrange, Euler and 

Hamilton did not create the most general description for physics. They asserted, 

for instance, that the positions and velocities (impulses) of particles/bodies, 

(ri(t), pi(t)), can be precisely determined at every time, t,. At least, they assumed 

that the precise initial conditions, (ri(t0), pi(t0)), can be assumed at some time, t  

= t0. In the ATOM, I gave up on this assumption because perfect precise 

measurements cannot be performed. 

Because the interactions are assumed to propagate with the constant speed c, 

space and time are connected. Therefore, I describe the dynamics in finite ranges 

of Minkowski space, Ω. In Minkowski space the distance between two points a1
ν
 

= (c∙t1,r1) and a2
ν
 = (c∙t2,r2) is defined with an invariant expression 

∆(a1,a2) = a1ν a2
ν
 = c

2
∙(t1 - t2)

2
 – ((x1 -x2)

2
 +(y1 -y2)

2 
+(z1 -z2)

2
).   (63) 

This expression is not positive definite. Individual particles can only move on 

paths connecting points with ∆(a1,a2) > 0. The interactions propagate on a four 

dimensional surface with ∆(a1,a2) = 0. The distances ∆(a1,a2) < 0 correspond to 

different individual particles. Furthermore, ∂
ν
 = ∂/∂xν = (1/c∙∂/∂t,-∂/∂r).  

The following does not use the condition that the knowledge of precise 

positions, ri(t), and velocities (impulses, pi(t)) of particles/bodies are known. 

Furthermore, I formulate each expression in Lorentz covariant forms in order to 

be sure that these are valid in each coordinate system of Minkowski space Ω. 

The action integral is constructed with A
(em)ν

(x) = (ϕ
(em)

(r,t)/c,A
(em)

(r,t)) and 

A
(g)ν

(x) = (ϕ
(g)

(r,t)/c,A
(g)

(r,t)), as a manifest invariant Lagrange function [7]  

 L =  ∫
Ω
 (dx)

4
 {Σi=e,p,P,E mi∙c ∂νji

(n)ν
(x) – (F

(em)
μν(x) F

(em)μν
(x) + F

(g)
μν(x) F

(g)μν
(x))/4 

      - Σi=e,p,P,E  qi∙ ji
(n)

ν(x)∙A
(em)ν

(x) + Σi=e,p,P,E  gi∙ji
(n)

ν(x)∙A
(g)ν

(x)},  (64) 

with the help of the Faraday tensors 

http://atomsz.com/covariant-theory/
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F
(em)μν

(x) =  ∂
μ
A

(em)ν
(x) - ∂

ν
A

(em)μ
(x),        (65) 

F
(g)μν

(x)  =  ∂
μ
A

(g)ν
(x) - ∂

ν
A

(g)μ
(x).        (66) 

The action integral is a Lorentz scalar. It is a probability density functional and 

it is constructed in order to derive the dynamics of the fields and the particles in 

a most general form. But the action functional, L, is not an expression of energy.  

The field dynamics could be derived in the usual way within Ω using the 

Hamilton principle, treating A
(em)ν

(x) and A
(g)ν

(x) as independent generalized 

variables and applying the Lorenz conditions as subsidiary conditions. The 

covariant field dynamics are given by the equations 

∂
μ
 ∂μ A

(em)ν
(x) = + j

(em)ν
(x) = + Σi=e,p,P,E qi∙ji

(n)ν
(x),     (67) 

∂
μ
 ∂μ A

(g)ν
(x) = - j

(g)ν
(x) = - Σi=e,p,P,E gi∙ji

(n)ν
(x).     (68) 

The first equation is the well known Maxwell equation. The second equation is a 

new wave equation for the motion of the covariant gravitational field, A
(g)ν

(x). 

Both are wave equations with the propagation speed c. 

The particles also have subsidiary conditions which are given by the 

conservation of particle numbers, ∂νji
(n)ν

(x) = 0, i = e,p,P,E, within Ω. I give the 

subsidiary conditions of particles a new name: isopretic subsidiary conditions. 

This is because the numbers of particles are conserved in Ω, and these are 

integral conditions. Such subsidiary conditions must be treated as Lagrange 

multipliers, λi, at the variation, [8] 

δ L + δ Σk λk/c∙( Σi ∫
Ω
 (dx)

4
 ∂νji

(n)ν
(x) ) = 0.      (69) 

These subsidiary conditions for particles are never used in established physics. 

Furthermore, the probability current densities must be written in a bilinear form  

ji
(n)ν

(x) = (c∙ρi(r,t),ji(r,t)) = c∙ψi(x)γ
ν
ψi(x), ν = 0,1,2,3 and i = e,p,P,E,  (70) 

and must be inserted in L in order to perform the variation. It is important to 

note, that the Dirac spinors ψi(x) and the γ
ν
 matrixes come into the theory 

because neither the positions, nor the velocities (impulses) of the particles are 

precisely known. Concerning construction; the ψi(x)γ
ν
ψi(x) are covariant four-

vectors and fulfill the continuity equations ∂ν(ψi(x)γ
ν
ψi(x)) = 0, i = e,p,P,E. 

Therefore, during the variation the spinors, ψi(x), and the adjoin spinors ψi(x) = 

ψi(x)
T
*∙γ

0
,  i = e,p,P,E, must be treated as independent generalized variables. The 

derived equations of particle motions are 
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(mi∙c
2
 – Σk λk∙∂νγ

ν
)

 
ψi(x) + qi∙A

(em)
ν(x)γ

ν
ψi(x) - gi∙A

(g)
ν(x)γ

ν
ψi(x) = 0,  

i =e ,p,P,E.           (71) 

The variation of  Eq. (64) is stationary in Ω, if all the spinors, ψi(x), fulfill these 

equations and if the fields fulfill the covariant wave equations Eqs. (67), (68). 

Whether the variation is stationary is another problem; this does not concern us: 

indeed we are seeking the time stationary in order to render conserved energies 

for exceptional particle states in Ω. For time stationary of solutions one must 

consider the equations 

(mi∙c
2
 - i∙Σk λk’/2π∙∂’νγ

ν
)ψ’i(x’) + qi∙A’

(em)
ν(x’)γ

ν
ψ’i(x’) - gi∙A’

(g)
ν(x’)γ

ν
ψ’i(x’) = 0,  

for i = e, p, P, E.          (72) 

The mutual fields of a composite particle systems, A’
(em)ν

(x’) and A’
(g)ν

(x’), must 

also be time stationary in the center of mass (COM) of the particles and ψ’i(x’) 

are relative spinors. The coordinate, x’ is to be taken according to the COM 

system. Regardless, the Lagrange multipliers, λk, λk’, only occur in the equations 

of particle motion because of particle numbers conservations. Such stationary 

bound states are independent of the boundary conditions [11]. 

There is a difference in the order of the differential equations that appear in 

ATOM and in conventional quantum mechanics. In ATOM the equations of 

particle motion are first order differential equations and the Lagrange multipliers 

appear linear connected to the time and space derivations. The spinors occur 

because neither the positions, nor the velocities of particles are precisely known. 

Furthermore, the ATOM does neither use generally the energy conservation in 

Ω, nor the quantization of energy. Since the formalism is described in finite 

ranges of Minkowski space, different boundary conditions on the surface of Ω 

can be described different unstable particle states for simultaneous 

determination of lifetimes, Γ, and energies with Lagrange multipliers [10], [11].  

Established quantum mechanics uses energy conservation and energy 

quantization with the Planck constant, h. Energy conservation can only be used 

in closed physical systems; therefore quantum mechanics uses infinite 

Minkowski space. Schrödinger [9] used the condition that the wave function 

must vanish at |r| → ∞. The correspondence principle applies the assumption 

that the initial quantum state can be precisely known at an initial time, t = t0 and 

utilizes an ad hoc transformation within energy conservation 
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E → +i∙h/2π ∂/∂t, p → -i∙h/2π ∂/∂r.        (73) 

In quantum mechanics, the Planck constant appears quadratic in the spatial part 

of the differential equation because the equation of the energy contains p
2
/2∙m’.  

I strongly suggest that an entire other condition causes the appearance of 

- h
2
/(2∙π∙m’) ∆ Ψ(r)         (74) 

in the spatial part of the equation of wave functions for stable bound states, 

namely that the surface conditions for wave functions must be independent of 

boundary of finite space regions, V. In this case, stable bound states appear at a 

condition, β
2 

= - β, whereby β is some parameter determining the wave function 

of stable states [1], [10], [11] (and not the quantization of energy). The 

description of (timely stationary) bound particle states in COM system and in 

finite space regions, V, uses the independency of wave functions form boundary 

conditions expressed with some parameter β and β determines the binding 

energy. This consideration justifies the relations  

λk = e
2
/2∙c∙( mij’∙c

2
/2∙E(binding,λk))

1/2
,      (75) 

and  

r(i,j) = λk 
2
/(4∙π

2
∙ mi,j’∙e

2
).         (76) 

The binding energy is coupled with parameter, λk, which we have called the 

Lagrange multiplier. For two-particle systems it is 

E(binding,λk) = ½∙mij’e
4
/(4∙λk

2
).       (77) 

On the other side, the binding energy can be expressed as difference of the sum 

of elementary particle masses minus the inertial rest mass, m
i
(i,j), multiplied by 

c
2
. For two-particle yields 

E(binding,(i,j)) = ((mi + mj) – m
i
(i,j))∙c

2
.      (78) 

We obtain from  

E(binding,(i,j)) =  ½ mij’∙c
2
∙(v(i,j) /c)

2
/(1 - (v(i,j) j/c)

2
)  →  

(v(i,j)/c)
2
/(1 - (v(i,j) /c)

2
)  = e

4
/(4∙λk

2
∙c

2
) < 1.      (79) 

In two-particle systems this relation connects the relative velocity of particles 

with λk and with Eq. (76) to the relative distance with the same constant. I am 

strongly disposed to assume that the relative distances, r(i,j) and the relative 
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velocities, v(i,j), are sharply determined by the interactions, despite the 

uncertainty surrounding initial positions and velocities. 

In ATOM, the timely stationary of states only gives energy conservation for 

exceptional states with some Lagrange multipliers in Ω. With time-dependent 

fields, A
(em)ν

(x) and A
(g)ν

(x), we cannot understood energy conservation as a 

general principle of physics. But, energy conservation is considered as one of 

the most important basics of conventional physics. Such a principle does not 

exist in Nature. The atomistic theory of matter is a relativistic quantum field 

theory, but neither the energy quantization, nor the E = m*∙c
2
 principle are 

needed. In this paper, the prognoses of ATOM have been discussed in 

comparison to all observed stable and unstable particles. Neutrinos and neutrino-

like particles are stable systems and are seen to have zero gravitational charges 

and zero gravitational masses.  

The ATOM gives a completely different physical description of Nature than 

established physics. Yet, the scientifically problems of this new description have 

not be comprehensively discussed. This paper is a new start.  

 

Conclusion 

The Atomistic Theory of Matter (ATOM), defined by a new physical axiom 

system, is a relativistic quantum field theory where only the charges of the 

elementary particles are conserved and quantized. The ATOM defines a particle 

physics based on e, p, P and E. Besides the Planck constant, h, further constants 

(Lagrange multipliers), h
0
 = h/387 and h are determined from the energetic 

stable bound states of two-particle systems. The compositions and mass splitting 

of observed unstable many-particle systems (mesons and baryons) are discussed. 

The binding energies of particle systems are determined the first time with the 

help of the observed inertial rest masses and the calculated gravitational masses. 

Tables define binding energies and sizes of two-particle systems, and binding 

energies, mass splitting and the compositions of mesons and baryons. The 

compositions of Kaons and Tauons are an, as yet, unsolved challenge. Particle 

reactions and particle decays can only be studied with the conservations of 

electric and gravitational charges which also conserve the gravitational masses. 

The conservation of gravitational masses means really mass conservation. In the 

contrary to established physics, in ATOM none of the concepts of conventional 

physics are used. These un-used concepts are: universality of free fall, energy 
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conservation and quantization, the quantization of interacting fields, weak and 

strong interactions, quark theories, further quantization of particle properties 

(for instance with spins), the particle-anti-particle concept, the subdivision of 

particles into fermions (quarks–leptons), bosons, hadrons and possible other 

hypothetical particles. The atomistic physics is a paradigm shift away from 

energetic physics. The established energetic physics did not recognize that the 

elementary particles have two kinds of conserved charges and that the neutrinos 

are composed particles with zero gravitational charges and masses. The 

gravitational mass and the inertial (rest) mass are fundamental different. The 

atomic nuclei are consisting of protons, electrons and positrons. The neutrinos 

and neutrino-like particles have the same number of protons and eltons and the 

same number of electrons and positrons. These are both electrically as 

gravitationally neutral. The charged mesons have the same number of protons 

and eltons. In baryons, the numbers of protons differ from the number of eltons 

at least by one. Furthermore, the gravitation is regarded by particle physics as an 

interaction. The elementary particles cannot approach each other closer than 10
-

17
 cm; a maximum matter density is given to be ca. 10

+24
 g/cm

3
, [7]. The ATOM 

does not use the special and general relativity theories. In the atomistic theory of 

matter only the relativity of particle motion between point-like particles and the 

relative movement to c are needed. Since the elementary masses of proton and 

electron, mP and me, are not equivalent to energy, the energy-mass-equivalence, 

E = m*∙c
2
, is not valid. The Conservation of Energy and the UFF are indeed not 

present in Nature. The laws of Nature are non-deterministic, however causal. 
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